Machine-learning modeL based on computed tomography body composition analysis for the estimation of resting energy expenditure: A pilot study.

Journal: Clinical nutrition ESPEN
Published Date:

Abstract

BACKGROUND & AIMS: The assessment of resting energy expenditure (REE) is a challenging task with the current existing methods. The reference method, indirect calorimetry (IC), is not widely available, and other surrogates, such as equations and bioimpedance (BIA) show poor agreement with IC. Body composition (BC), in particular muscle mass, plays an important role in REE. In recent years, computed tomography (CT) has emerged as a reliable tool for BC assessment, but its usefulness for the REE evaluation has not been examined. In the present study we have explored the usefulness of CT-scan imaging to assess the REE using AI machine-learning models.

Authors

  • Fiorella Palmas
    Endocrinology and Nutrition Department, Hospital Universitari Vall D´Hebron, Barcelona, Spain.
  • Andreea Ciudin
    Endocrinology and Nutrition Department, Hospital Universitari Vall D´Hebron, Barcelona, Spain.
  • Jose Melian
    ARTIS Development, Las Palmas, Spain.
  • Raul Guerra
    ARTIS Development, Las Palmas, Spain.
  • Alba Zabalegui
    Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
  • Guillermo Cárdenas
    Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
  • Fernanda Mucarzel
    Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
  • Aitor Rodriguez
    Department of Radiology, Institut De Diagnòstic Per La Imatge (IDI), Hospital Universitari Vall d'Hebron, Barcelona, Spain.
  • Nuria Roson
    Department of Radiology, Institut De Diagnòstic Per La Imatge (IDI), Hospital Universitari Vall d'Hebron, Barcelona, Spain.
  • Rosa Burgos
    Endocrinology and Nutrition Department, Hospital Universitari Vall D´Hebron, Barcelona, Spain.
  • Cristina Hernández
    Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Diabetes and Metabolism Research Unit, Vall d'Hebron Institut De Recerca (VHIR), Barcelona, Spain; Department of Medicine, Universitat Autònoma De Barcelona, Barcelona, Spain; Centro De Investigación Biomédica En Red De Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto De Salud Carlos III (ISCIII), Madrid, Spain.
  • Rafael Simó
    Endocrinology and Nutrition Department, Hospital Universitari Vall D´Hebron, Barcelona, Spain.