Supervised machine learning algorithms for the classification of obesity levels using anthropometric indices derived from bioelectrical impedance analysis.

Journal: Scientific reports
Published Date:

Abstract

The accurate classification of obesity is essential for public health and clinical decision-making. Traditional anthropometric measures such as body mass index (BMI) have limitations in differentiating between fat and lean mass. This study aimed to evaluate and compare the performance of various supervised machine learning algorithms in classifying obesity levels using anthropometric indices derived from bioelectrical impedance analysis (BIA). A cross-sectional study was conducted on a sample of 5372 adults (age 34.6 ± 10.0 years) (2727 females and 2645 males). Anthropometric data included BMI, fat mass index (FMI), fat-free mass index (FFMI), skeletal muscle index (SMI), muscle mass index (MM), and others were collected using a validated multifrequency octopolar BIA device (InBody 270). Six supervised machine learning models, random forest, gradient koosting, k-nearest neighbors, logistic regression, support vector machine, and decision tree, were trained and evaluated using accuracy, precision, recall, F1-score, area under the receiver operating characteristic curve (AUC-ROC), and SHapley Additive exPlanations value explanations. Random forest outperformed all other models, achieving the highest accuracy (84.2%), F1-score (83.7%), and AUC-ROC (0.947). SHapley Additive exPlanations analysis revealed that FMI, FFMI, and BMI were the most influential features, while sex had minimal predictive impact. Machine learning models, particularly tree-based algorithms like random forest, show great potential in classifying obesity levels from anthropometric data with high accuracy and interpretability. These models can enhance the effectiveness of obesity screening in clinical and community settings.

Authors

  • Rodrigo Yáñez-Sepúlveda
    Faculty Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile.
  • Aldo Vásquez-Bonilla
    Facultad de Ciencias del Deporte, Universidad de Extremadura, Cáceres, Spain.
  • Rodrigo Olivares
    Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso 2362905, Chile.
  • Pablo Olivares
    Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso, Chile.
  • Juan Pablo Zavala-Crichton
    Faculty Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile.
  • Claudio Hinojosa-Torres
    Faculty Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile.
  • Catalina Muñoz-Strale
    Faculty Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile.
  • Frano Giakoni-Ramírez
    Faculty Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile.
  • Josivaldo de Souza-Lima
    Faculty Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile.
  • Jacqueline Páez-Herrera
    Grupo eFidac, Escuela de Educación Física, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
  • Jorge Olivares-Arancibia
    Grupo AFySE, Investigación en Actividad Fìsica y Salud Escolar, Escuela de Pedagogìa en Educación Fìsica, Facultad de Educación, Universidad de Las Américas, Santiago, Chile.
  • Tomás Reyes-Amigo
    Observatorio de Ciencias de la Actividad Física (OCAF), Departamento de Ciencias de la Actividad Física, Universidad de Playa Ancha, Valparaíso, Chile.
  • Guillermo Cortés-Roco
    Universidad Viña del Mar, Viña del Mar, Chile.
  • Juan Hurtado-Almonacid
    Grupo eFidac, Escuela de Educación Física, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
  • Eduardo Guzmán-Muñoz
    Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Talca, Chile.
  • Nicole Aguilera-Martínez
    Facultad Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile.
  • José Francisco López-Gil
    School of Medicine, Universidad Espíritu Santo, Samborondón, Ecuador. josefranciscolopezgil@gmail.com.
  • Boryi A Becerra-Patiño
    Faculty of Physical Education, National Pedagogical University, Bogotá, Colombia.
  • Juan David Paucar-Uribe
    Faculty of Physical Education, National Pedagogical University, Bogotá, Colombia.
  • Exal Garcia-Carrillo
    Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile.
  • Vicente Javier Clemente-Suárez
    Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, Madrid, Spain.