Prediction of 1-Year Activity in Systemic Lupus Erythematosus: Hierarchical Machine Learning Approach.

Journal: JMIR formative research
Published Date:

Abstract

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic disease characterized by a broad spectrum of involved organs, including neurological, renal, and vascular domains, with disease activity manifesting through unpredictable patterns that vary across individuals and over time, making the prediction of activity events particularly challenging.

Authors

  • Livia Lilli
    Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
  • Laura Antenucci
    Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
  • Augusta Ortolan
    Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
  • Silvia Laura Bosello
    Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
  • Stefano Patarnello
    Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • Carlotta Masciocchi
    Istituto di Radiologia, Universitá Cattolica del Sacro Cuore, Largo F.Vito 1, 00168 Rome, Italy.
  • Marco Gorini
    AstraZeneca Italy, MIND, Milan, Italy.
  • Gabriella Castellino
    AstraZeneca Italy, MIND, Milan, Italy.
  • Alfredo Cesario
    Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • Maria Antonietta D'Agostino
    Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
  • Jacopo Lenkowicz
    Istituto di Radiologia, Universitá Cattolica del Sacro Cuore, Largo F.Vito 1, 00168 Rome, Italy.