Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning.

Journal: Scientific reports
PMID:

Abstract

In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.

Authors

  • Lionel Blanchet
    1] Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands [2] Analytical Chemistry/Chemometrics, Institute for Molecules and Materials, Radboud University, postvak 61P.O. Box 9010, 6500 GL Nijmegen, The Netherlands [3] Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands [4] Khondrion BV, Philips van Leydenlaan 15, 6525EX Nijmegen, The Netherlands.
  • Jan A M Smeitink
    1] Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands [2] Khondrion BV, Philips van Leydenlaan 15, 6525EX Nijmegen, The Netherlands [3] Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, Geert Grooteplein 10PO BOX 9101, 6500 HB Nijmegen, The Netherlands.
  • Sjenet E van Emst-de Vries
    1] Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands [2] Khondrion BV, Philips van Leydenlaan 15, 6525EX Nijmegen, The Netherlands.
  • Caroline Vogels
    Khondrion BV, Philips van Leydenlaan 15, 6525EX Nijmegen, The Netherlands.
  • Mina Pellegrini
    Khondrion BV, Philips van Leydenlaan 15, 6525EX Nijmegen, The Netherlands.
  • An I Jonckheere
    Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, Geert Grooteplein 10PO BOX 9101, 6500 HB Nijmegen, The Netherlands.
  • Richard J T Rodenburg
    1] Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands [2] Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, Geert Grooteplein 10PO BOX 9101, 6500 HB Nijmegen, The Netherlands.
  • Lutgarde M C Buydens
    1] Analytical Chemistry/Chemometrics, Institute for Molecules and Materials, Radboud University, postvak 61P.O. Box 9010, 6500 GL Nijmegen, The Netherlands [2] Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Julien Beyrath
    Khondrion BV, Philips van Leydenlaan 15, 6525EX Nijmegen, The Netherlands.
  • Peter H G M Willems
    1] Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands [2] Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands [3] Khondrion BV, Philips van Leydenlaan 15, 6525EX Nijmegen, The Netherlands.
  • Werner J H Koopman
    1] Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands [2] Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands [3] Khondrion BV, Philips van Leydenlaan 15, 6525EX Nijmegen, The Netherlands.