Predictive Models Based on Support Vector Machines: Whole-Brain versus Regional Analysis of Structural MRI in the Alzheimer's Disease.

Journal: Journal of neuroimaging : official journal of the American Society of Neuroimaging
Published Date:

Abstract

Decision-making systems trained on structural magnetic resonance imaging data of subjects affected by the Alzheimer's disease (AD) and healthy controls (CTRL) are becoming widespread prognostic tools for subjects with mild cognitive impairment (MCI). This study compares the performances of three classification methods based on support vector machines (SVMs), using as initial sets of brain voxels (ie, features): (1) the segmented grey matter (GM); (2) regions of interest (ROIs) by voxel-wise t-test filtering; (3) parceled ROIs, according to prior knowledge. The recursive feature elimination (RFE) is applied in all cases to investigate whether feature reduction improves the classification accuracy. We analyzed more than 600 AD Neuroimaging Initiative (ADNI) subjects, training the SVMs on the AD/CTRL dataset, and evaluating them on a trial MCI dataset. The classification performance, evaluated as the area under the receiver operating characteristic curve (AUC), reaches AUC = (88.9 ± .5)% in 20-fold cross-validation on the AD/CTRL dataset, when the GM is classified as a whole. The highest discrimination accuracy between MCI converters and nonconverters is achieved when the SVM-RFE is applied to the whole GM: with AUC reaching (70.7 ± .9)%, it outperforms both ROI-based approaches in predicting the AD conversion.

Authors

  • Alessandra Retico
    Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy.
  • Paolo Bosco
    Dipartimento di Fisica, Università degli Studi di Genova, Genova, Italy.
  • Piergiorgio Cerello
    Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy.
  • Elisa Fiorina
    Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy.
  • Andrea Chincarini
    Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Genova, Italy.
  • Maria Evelina Fantacci
    Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy.