Digging deep into Golgi phenotypic diversity with unsupervised machine learning.

Journal: Molecular biology of the cell
PMID:

Abstract

The synthesis of glycans and the sorting of proteins are critical functions of the Golgi apparatus and depend on its highly complex and compartmentalized architecture. High-content image analysis coupled to RNA interference screening offers opportunities to explore this organelle organization and the gene network underlying it. To date, image-based Golgi screens have based on a single parameter or supervised analysis with predefined Golgi structural classes. Here, we report the use of multiparametric data extracted from a single marker and a computational unsupervised analysis framework to explore Golgi phenotypic diversity more extensively. In contrast with the three visually definable phenotypes, our framework reproducibly identified 10 Golgi phenotypes. They were used to quantify and stratify phenotypic similarities among genetic perturbations. The derived phenotypic network partially overlaps previously reported protein-protein interactions as well as suggesting novel functional interactions. Our workflow suggests the existence of multiple stable Golgi organizational states and provides a proof of concept for the classification of drugs and genes using fine-grained phenotypic information.

Authors

  • Shaista Hussain
    School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798.
  • Xavier Le Guezennec
    Institute of Molecular and Cell Biology, Singapore 138673.
  • Wang Yi
    Institute of High Performance Computing, Singapore 138673.
  • Huang Dong
    Institute of High Performance Computing, Singapore 138673.
  • Joanne Chia
    Institute of Molecular and Cell Biology, Singapore 138673.
  • Ke Yiping
    School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798.
  • Lee Kee Khoon
    Institute of High Performance Computing, Singapore 138673.
  • Frédéric Bard
    Institute of Molecular and Cell Biology, Singapore 138673 fbard@imcb.a-star.edu.sg.