SetSVM: An Approach to Set Classification in Nuclei-Based Cancer Detection.

Journal: IEEE journal of biomedical and health informatics
Published Date:

Abstract

Due to the importance of nuclear structure in cancer diagnosis, several predictive models have been described for diagnosing a wide variety of cancers based on nuclear morphology. In many computer-aided diagnosis (CAD) systems, cancer detection tasks can be generally formulated as set classification problems, which can not be directly solved by classifying single instances. In this paper, we propose a novel set classification approach SetSVM to build a predictive model by considering any nuclei set as a whole without specific assumptions. SetSVM features highly discriminative power in cancer detection challenges in the sense that it not only optimizes the classifier decision boundary but also transfers discriminative information to set representation learning. During model training, these two processes are unified in the support vector machine (SVM) maximum separation margin problem. Experiment results show that SetSVM provides significant improvements compared with five commonly used approaches in cancer detection tasks utilizing 260 patients in total across three different cancer types, namely, thyroid cancer, liver cancer, and melanoma. In addition, we show that SetSVM enables visual interpretation of discriminative nuclear characteristics representing the nuclei set. These features make SetSVM a potentially practical tool in building accurate and interpretable CAD systems for cancer detection.

Authors

  • Chi Liu
  • Yue Huang
    Xiamen University, Xiamen, Fujian 361005, China.
  • John A Ozolek
  • Matthew G Hanna
    Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
  • Rajendra Singh
  • Gustavo K Rohde
    Imaging and Data Science Laboratory Department of Biomedical Engineering Department of Electrical and Computer Engineering University of Virginia.