Decision Support System for Seizure Onset Zone Localization Based on Channel Ranking and High-Frequency EEG Activity.
Journal:
IEEE journal of biomedical and health informatics
Published Date:
Jul 1, 2019
Abstract
Interictal high-frequency oscillations (HFO) are a promising biomarker that can help define the seizure onset zone (SOZ) and predict the surgical outcome after the epilepsy surgery. The utility of HFO in planning the surgery, though, is unclear. Reasons include the variability of the HFO across patients and brain regions and the influence of the sleep-wake cycle, which causes large fluctuations in the ratio between the HFO observed in SOZ and non-SOZ regions. To cope with these limitations, a rank-based solution is proposed to identify the SOZ by using the HFO in multichannel intracranial EEG. A time-varying index of the epileptic susceptibility of the different brain areas is derived from the HFO rate and a support vector machine is applied on this index to identify the SOZ. The solution is trained and tested on separate groups of patients to avoid the use of patient-specific information and provides optimal SOZ prediction using as little as 30 min of recordings per channel (window). Tested on 14 patients with various combinations of seizure type, epilepsy etiology, and SOZ arrangement (172.7 ± 90.1 h/channel per patient and 75.6 ± 23.5 channels/patient, mean ± S.D.), our solution identified the SOZ with 0.92 ± 0.03 accuracy and 0.91 ± 0.03 area under the ROC curve (mean ± S.D.) across patients. For each patient, the window onset time was varied over 72 continuous hours and the prediction of the SOZ remained insensitive to the onset time, thus showing potential for surgery planning.