Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data.

Journal: NeuroImage
Published Date:

Abstract

A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer's disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different key components of the validation are often not readily available. These components include selected participants and input data, image preprocessing and cross-validation procedures. The performance of the different approaches is also difficult to compare objectively. In particular, it is often difficult to assess which part of the method (e.g. preprocessing, feature extraction or classification algorithms) provides a real improvement, if any. In the present paper, we propose a framework for reproducible and objective classification experiments in AD using three publicly available datasets (ADNI, AIBL and OASIS). The framework comprises: i) automatic conversion of the three datasets into a standard format (BIDS); ii) a modular set of preprocessing pipelines, feature extraction and classification methods, together with an evaluation framework, that provide a baseline for benchmarking the different components. We demonstrate the use of the framework for a large-scale evaluation on 1960 participants using T1 MRI and FDG PET data. In this evaluation, we assess the influence of different modalities, preprocessing, feature types (regional or voxel-based features), classifiers, training set sizes and datasets. Performances were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all classification tasks. No difference in performance was found for the use of different atlases, image smoothing, partial volume correction of FDG PET images, or feature type. Linear SVM and L2-logistic regression resulted in similar performance and both outperformed random forests. The classification performance increased along with the number of subjects used for training. Classifiers trained on ADNI generalized well to AIBL and OASIS. All the code of the framework and the experiments is publicly available: general-purpose tools have been integrated into the Clinica software (www.clinica.run) and the paper-specific code is available at: https://gitlab.icm-institute.org/aramislab/AD-ML.

Authors

  • Jorge Samper-González
    Inria, ARAMIS Project-team, F-75013, Paris, France; Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France; Inserm, U1127, F-75013, Paris, France; CNRS, UMR 7225, F-75013, Paris, France; Sorbonne Université, F-75013, Paris, France. Electronic address: jorge.samper-gonzalez@inria.fr.
  • Ninon Burgos
    Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris 75013, France. Electronic address: ninon.burgos@cnrs.fr.
  • Simona Bottani
    Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris 75013, France.
  • Sabrina Fontanella
    Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France; Inserm, U1127, F-75013, Paris, France; CNRS, UMR 7225, F-75013, Paris, France; Sorbonne Université, F-75013, Paris, France; Inria, ARAMIS Project-team, F-75013, Paris, France.
  • Pascal Lu
    Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France; Inserm, U1127, F-75013, Paris, France; CNRS, UMR 7225, F-75013, Paris, France; Sorbonne Université, F-75013, Paris, France; Inria, ARAMIS Project-team, F-75013, Paris, France.
  • Arnaud Marcoux
    Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France; Inserm, U1127, F-75013, Paris, France; CNRS, UMR 7225, F-75013, Paris, France; Sorbonne Université, F-75013, Paris, France; Inria, ARAMIS Project-team, F-75013, Paris, France.
  • Alexandre Routier
    Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France; Inserm, U1127, F-75013, Paris, France; CNRS, UMR 7225, F-75013, Paris, France; Sorbonne Université, F-75013, Paris, France; Inria, ARAMIS Project-team, F-75013, Paris, France.
  • Jérémy Guillon
    Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France; Inserm, U1127, F-75013, Paris, France; CNRS, UMR 7225, F-75013, Paris, France; Sorbonne Université, F-75013, Paris, France; Inria, ARAMIS Project-team, F-75013, Paris, France.
  • Michael Bacci
    Inria, ARAMIS Project-team, F-75013, Paris, France; Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France; Inserm, U1127, F-75013, Paris, France; CNRS, UMR 7225, F-75013, Paris, France; Sorbonne Université, F-75013, Paris, France.
  • Junhao Wen
    Laboratory of AI and Biomedical Science (LABS), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA.
  • Anne Bertrand
    Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France; Inserm, U1127, F-75013, Paris, France; CNRS, UMR 7225, F-75013, Paris, France; Sorbonne Université, F-75013, Paris, France; Inria, ARAMIS Project-team, F-75013, Paris, France; AP-HP, Department of Neuroradiology, Pitié-Salpêtrière Hospital, Paris, France.
  • Hugo Bertin
    Laboratoire d'Imagerie Biomédicale, Inserm, U 1146, CNRS, UMR 7371, Sorbonne Université, F-75013, Paris, France.
  • Marie-Odile Habert
    Laboratoire d'Imagerie Biomédicale, Inserm, U 1146, CNRS, UMR 7371, Sorbonne Université, F-75013, Paris, France; AP-HP, Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, Paris, France.
  • Stanley Durrleman
    Inria, ARAMIS Project-team, F-75013, Paris, France; Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France; Inserm, U1127, F-75013, Paris, France; CNRS, UMR 7225, F-75013, Paris, France; Sorbonne Université, F-75013, Paris, France.
  • Theodoros Evgeniou
    INSEAD, Bd de Constance, 77305, Fontainebleau, France.
  • Olivier Colliot
    Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris 75013, France.