Predicting individual decision-making responses based on single-trial EEG.

Journal: NeuroImage
Published Date:

Abstract

Decision-making plays an essential role in the interpersonal interactions and cognitive processing of individuals. There has been increasing interest in being able to predict an individual's decision-making response (i.e., acceptance or rejection). We proposed an electroencephalogram (EEG)-based computational intelligence framework to predict individual responses. Specifically, the discriminative spatial network pattern (DSNP), a supervised learning approach, was applied to single-trial EEG data to extract the DSNP feature from the single-trial brain network. A linear discriminate analysis (LDA) trained on the DSNP features was then used to predict the individual response trial-by-trial. To verify the performance of the proposed DSNP, we recruited two independent subject groups, and recorded the EEGs using two types of EEG systems. The performances of the trial-by-trial predictors achieved an accuracy of 0.88 ± 0.09 for the first dataset, and 0.90 ± 0.10 for the second dataset. These trial-by-trial prediction performances suggested that individual responses could be predicted trial-by-trial by using the specific pattern of single-trial EEG networks, and our proposed method has the potential to establish the biologically inspired artificial intelligence decision system.

Authors

  • Yajing Si
    The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
  • Fali Li
    The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
  • Keyi Duan
    The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
  • Qin Tao
    The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
  • Cunbo Li
    The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
  • Zehong Cao
  • Yangsong Zhang
  • Bharat Biswal
    Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark NJ, USA.
  • Peiyang Li
    Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
  • DeZhong Yao
    The Key Laboratory for Neuro Information of Ministry of Education, Center for Information in Bio Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
  • Peng Xu
    Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.