Application of Generalized Split Linearized Bregman Iteration algorithm for Alzheimer's disease prediction.

Journal: Aging
Published Date:

Abstract

In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSplit LBI). It combines logistic regression and structural sparsity regularizations. In the study, 57 AD patients and 47 normal controls (NCs) were enrolled. We first extracted the entire brain gray matter volume values of all subjects and then used GSplit LBI to build a predictive classification model with a 10-fold full cross-validation method. The model accuracy achieved 90.44%. To further verify which voxels in the dataset have greater impact on the prediction results, we ranked the weight parameters and obtained the top 6% of the model parameters. To verify the generalization of model prediction and the stability of feature selection, we performed a cross-test on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and a Chinese dataset and achieved good performances on different cohorts. Conclusively, based on the sMRI dataset, our algorithm not only had good performance in a local cohort with high accuracy but also had good generalization of model prediction and stability of feature selection in different cohorts.

Authors

  • Weimin Zheng
    Department of Radiology, Aerospace Center Hospital, Beijing 100049, China.
  • Bin Cui
    Department of Radiology, Aerospace Center Hospital, Beijing 100049, China.
  • Zeyu Sun
    Deepwise AI lab, Beijing 100080, China.
  • Xiuli Li
    Department of Obstetrics and Gynecology, General Hospital of Chinese People's Liberation Army, Beijing 100853, China.
  • Xu Han
  • Yu Yang
    Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi, China.
  • Kuncheng Li
    Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
  • Lingjing Hu
    Yanjing Medical College, Capital Medical University, Beijing 101300, China.
  • Zhiqun Wang
    Department of Radiology, Aerospace Center Hospital, Beijing 100049, China.