Transformation-Consistent Self-Ensembling Model for Semisupervised Medical Image Segmentation.

Journal: IEEE transactions on neural networks and learning systems
Published Date:

Abstract

A common shortfall of supervised deep learning for medical imaging is the lack of labeled data, which is often expensive and time consuming to collect. This article presents a new semisupervised method for medical image segmentation, where the network is optimized by a weighted combination of a common supervised loss only for the labeled inputs and a regularization loss for both the labeled and unlabeled data. To utilize the unlabeled data, our method encourages consistent predictions of the network-in-training for the same input under different perturbations. With the semisupervised segmentation tasks, we introduce a transformation-consistent strategy in the self-ensembling model to enhance the regularization effect for pixel-level predictions. To further improve the regularization effects, we extend the transformation in a more generalized form including scaling and optimize the consistency loss with a teacher model, which is an averaging of the student model weights. We extensively validated the proposed semisupervised method on three typical yet challenging medical image segmentation tasks: 1) skin lesion segmentation from dermoscopy images in the International Skin Imaging Collaboration (ISIC) 2017 data set; 2) optic disk (OD) segmentation from fundus images in the Retinal Fundus Glaucoma Challenge (REFUGE) data set; and 3) liver segmentation from volumetric CT scans in the Liver Tumor Segmentation Challenge (LiTS) data set. Compared with state-of-the-art, our method shows superior performance on the challenging 2-D/3-D medical images, demonstrating the effectiveness of our semisupervised method for medical image segmentation.

Authors

  • Xiaomeng Li
  • Lequan Yu
  • Hao Chen
    The First School of Medicine, Wenzhou Medical University, Wenzhou, China.
  • Chi-Wing Fu
  • Lei Xing
    Department of Radiation Oncology, Stanford University, CA, USA.
  • Pheng-Ann Heng