DeepVISP: Deep Learning for Virus Site Integration Prediction and Motif Discovery.

Journal: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
PMID:

Abstract

Approximately 15% of human cancers are estimated to be attributed to viruses. Virus sequences can be integrated into the host genome, leading to genomic instability and carcinogenesis. Here, a new deep convolutional neural network (CNN) model is developed with attention architecture, namely DeepVISP, for accurately predicting oncogenic virus integration sites (VISs) in the human genome. Using the curated benchmark integration data of three viruses, hepatitis B virus (HBV), human herpesvirus (HPV), and Epstein-Barr virus (EBV), DeepVISP achieves high accuracy and robust performance for all three viruses through automatically learning informative features and essential genomic positions only from the DNA sequences. In comparison, DeepVISP outperforms conventional machine learning methods by 8.43-34.33% measured by area under curve (AUC) value enhancement in three viruses. Moreover, DeepVISP can decode -regulatory factors that are potentially involved in virus integration and tumorigenesis, such as HOXB7, IKZF1, and LHX6. These findings are supported by multiple lines of evidence in literature. The clustering analysis of the informative motifs reveales that the representative k-mers in clusters could help guide virus recognition of the host genes. A user-friendly web server is developed for predicting putative oncogenic VISs in the human genome using DeepVISP.

Authors

  • Haodong Xu
    Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
  • Peilin Jia
    Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. peilin.jia@uth.tmc.edu.
  • Zhongming Zhao
    Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States.