Machine learning applied to near-infrared spectra for clinical pleural effusion classification.

Journal: Scientific reports
PMID:

Abstract

Lung cancer patients with malignant pleural effusions (MPE) have a particular poor prognosis. It is crucial to distinguish MPE from benign pleural effusion (BPE). The present study aims to develop a rapid, convenient and economical diagnostic method based on FTIR near-infrared spectroscopy (NIRS) combined with machine learning strategy for clinical pleural effusion classification. NIRS spectra were recorded for 47 MPE samples and 35 BPE samples. The sample data were randomly divided into train set (n = 62) and test set (n = 20). Partial least squares, random forest, support vector machine (SVM), and gradient boosting machine models were trained, and subsequent predictive performance were predicted on the test set. Besides the whole spectra used in modeling, selected features using SVM recursive feature elimination algorithm were also investigated in modeling. Among those models, NIRS combined with SVM showed the best predictive performance (accuracy: 1.0, kappa: 1.0, and AUC: 1.0). SVM with the top 50 feature wavenumbers also displayed a high predictive performance (accuracy: 0.95, kappa: 0.89, AUC: 0.99). Our study revealed that the combination of NIRS and machine learning is an innovative, rapid, and convenient method for clinical pleural effusion classification, and worth further evaluation.

Authors

  • Zhongjian Chen
    Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  • Keke Chen
    Cancer Hospital of the University of Chinese Academy of Sciences, Chinese Academy of Sciences, Banshandong Road#1, Hangzhou, 310000, Zhejiang Province, China.
  • Yan Lou
    Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, Zhejiang, China.
  • Jing Zhu
    College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
  • Weimin Mao
    The Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
  • Zhengbo Song
    Department of Clinical Trial, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China.