Machine learning for predicting cognitive decline within five years in Parkinson's disease: Comparing cognitive assessment scales with DAT SPECT and clinical biomarkers.
Journal:
PloS one
PMID:
39018311
Abstract
OBJECTIVE: Parkinson's disease (PD) is an age-related neurodegenerative condition characterized mostly by motor symptoms. Although a wide range of non-motor symptoms (NMS) are frequently experienced by PD patients. One of the important and common NMS is cognitive impairment, which is measured using different cognitive scales. Monitoring cognitive impairment and its decline in PD is essential for patient care and management. In this study, our goal is to identify the most effective cognitive scale in predicting cognitive decline over a 5-year timeframe initializing clinical biomarkers and DAT SPECT.