Integrative machine learning and neural networks for identifying PANoptosis-related lncRNA molecular subtypes and constructing a predictive model for head and neck squamous cell carcinoma.
Journal:
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
PMID:
38914821
Abstract
PURPOSE: PANoptosis is considered a novel type of cell death that plays important roles in tumor progression. In this study, we applied machine learning algorithms to explore the relationships between PANoptosis-related lncRNAs (PRLs) and head and neck squamous cell carcinoma (HNSCC) and established a neural network model for prognostic prediction.