AIMC Topic: Kaplan-Meier Estimate

Clear Filters Showing 1 to 10 of 172 articles

Development and validation of a modified SOFA score for mortality prediction in candidemia patients.

Scientific reports
Candidemia is a life-threatening bloodstream infection associated with high mortality rates, particularly in critically ill patients. Accurate risk stratification is crucial for timely intervention and could improve patient outcomes. This study aimed...

Factors influencing short-term and long-term survival rates in stroke patients receiving enteral nutrition: a machine learning approach using MIMIC-IV database.

BMC neurology
PURPOSE: This study aims to evaluate the survival and mortality rates of stroke patients after receiving enteral nutrition, and to explore factors influencing long-term survival. With an aging society, nutritional management of stroke patients has be...

Gadoxetic acid-enhanced MRI for identifying cholangiocyte phenotype hepatocellular carcinoma by interpretable machine learning: individual application of SHAP.

BMC cancer
PURPOSE: Cholangiocyte phenotype hepatocellular carcinoma (HCC) is highly invasive. This study aims to develop and validate an optimal machine learning model to predict cholangiocyte phenotype HCC based on T1 mapping gadoxetic acid-enhanced MRI and t...

A machine learning approach to risk-stratification of gastric cancer based on tumour-infiltrating immune cell profiles.

Annals of medicine
BACKGROUND: Gastric cancer (GC) is a highly heterogeneous disease, and the response of patients to clinical treatment varies substantially. There is no satisfactory strategy for predicting curative effects to date. We aimed to explore a new method fo...

Life's Crucial 9 and NAFLD from association to SHAP-interpreted machine learning predictions.

Scientific reports
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. Cardiovascular disease (CVD) and NAFLD share multiple common risk factors. Life's Crucial 9 (LC9), a novel indicator for comprehensive assessment of card...

Identification of novel diagnostic and prognostic microRNAs in sarcoma on TCGA dataset: bioinformatics and machine learning approach.

Scientific reports
The discovery of unique microRNA (miR) patterns and their corresponding genes in sarcoma patients indicates their involvement in cancer development and suggests their potential use in medical management. MiRs were identified from The Cancer Genome At...

MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival.

Scientific reports
We aimed to predict CD44 expression and assess its prognostic significance in patients with high-grade gliomas (HGG) using non-invasive radiomics models based on machine learning. Enhanced magnetic resonance imaging, along with the corresponding gene...