BACKGROUND AND OBJECTIVES: Accurate survival prediction for pancreatic ductal adenocarcinoma (PDAC) is crucial for personalized treatment strategies. This study aims to construct a novel pathomics indicator using hematoxylin and eosin-stained whole s...
BACKGROUND: Checkpoint kinase 1 (CHEK1) is often overexpressed in solid tumors. Nonetheless, the prognostic significance of CHEK1 in breast cancer (BrC) remains unclear. This study used pathomics leverages machine learning to predict BrC prognosis ba...
PURPOSE: To evaluate machine learning-based survival model roles in predicting rehospitalization after hip fractures to improve reduce the burden on the healthcare system.
BACKGROUND: High-grade gliomas are among the most aggressive and deadly brain tumors, highlighting the critical need for improved prognostic markers and predictive models. Recent studies have identified the expression of IL7R as a significant risk fa...
BACKGROUND: To investigate the preoperative factors influencing textbook outcomes (TO) in Intrahepatic cholangiocarcinoma (ICC) patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO, we dev...
PURPOSE: This study aims to evaluate the survival and mortality rates of stroke patients after receiving enteral nutrition, and to explore factors influencing long-term survival. With an aging society, nutritional management of stroke patients has be...
PURPOSE: Cholangiocyte phenotype hepatocellular carcinoma (HCC) is highly invasive. This study aims to develop and validate an optimal machine learning model to predict cholangiocyte phenotype HCC based on T1 mapping gadoxetic acid-enhanced MRI and t...
The Journal of international medical research
40279206
ObjectiveOur objective was to investigate a novel cancer-associated fibroblast-related gene signature for predicting clinical outcomes in patients with diffuse large B cell lymphoma.MethodsThe cancer-associated fibroblast-related module genes were id...
BACKGROUND: Gastric cancer (GC) is a highly heterogeneous disease, and the response of patients to clinical treatment varies substantially. There is no satisfactory strategy for predicting curative effects to date. We aimed to explore a new method fo...
BACKGROUND: The mortality burden of metabolic dysfunction-associated fatty liver disease (MAFLD) is rising, making it crucial to predict mortality and identify the factors influencing it. While advanced machine learning algorithms are gaining recogni...