AI Medical Compendium Journal:
ChemMedChem

Showing 11 to 14 of 14 articles

RASPELD to Perform High-End Screening in an Academic Environment toward the Development of Cancer Therapeutics.

ChemMedChem
The identification of compounds for dissecting biological functions and the development of novel drug molecules are central tasks that often require screening campaigns. However, the required architecture is cost- and time-intensive. Herein we descri...

Designing Anticancer Peptides by Constructive Machine Learning.

ChemMedChem
Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to d...

Chemogenomic Active Learning's Domain of Applicability on Small, Sparse qHTS Matrices: A Study Using Cytochrome P450 and Nuclear Hormone Receptor Families.

ChemMedChem
Computational models for predicting the activity of small molecules against targets are now routinely developed and used in academia and industry, partially due to public bioactivity databases. While models based on bigger datasets are the trend, rec...

Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters.

ChemMedChem
False-positive assay readouts caused by badly behaving compounds-frequent hitters, pan-assay interference compounds (PAINS), aggregators, and others-continue to pose a major challenge to experimental screening. There are only a few in silico methods ...