AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

ErbB Receptors

Showing 1 to 10 of 77 articles

Clear Filters

Machine learning-aided discovery of T790M-mutant EGFR inhibitor CDDO-Me effectively suppresses non-small cell lung cancer growth.

Cell communication and signaling : CCS
BACKGROUND: Epidermal growth factor receptor (EGFR) T790M mutation often occurs during long durational erlotinib treatment of non-small cell lung cancer (NSCLC) patients, leading to drug resistance and disease progression. Identification of new selec...

Predicting a failure of postoperative thromboprophylaxis in non-small cell lung cancer: A stacking machine learning approach.

PloS one
BACKGROUND: Non-small-cell lung cancer (NSCLC) and its surgery significantly increase the venous thromboembolism (VTE) risk. This study explored the VTE risk factors and established a machine-learning model to predict a failure of postoperative throm...

[Exploration of the Predictive Value of Peripheral Blood-related Indicators for EGFR 
Mutations and Prognosis in Non-small Cell Lung Cancer Using Machine Learning].

Zhongguo fei ai za zhi = Chinese journal of lung cancer
BACKGROUND: Epidermal growth factor receptor (EGFR) sensitive mutation is one of the effective targets of targeted therapy for non-small cell lung cancer (NSCLC). However, due to the difficulty of obtaining some primary tissues and the economic facto...

T-ALPHA: A Hierarchical Transformer-Based Deep Neural Network for Protein-Ligand Binding Affinity Prediction with Uncertainty-Aware Self-Learning for Protein-Specific Alignment.

Journal of chemical information and modeling
There is significant interest in targeting disease-causing proteins with small molecule inhibitors to restore healthy cellular states. The ability to accurately predict the binding affinity of small molecules to a protein target in silico enables the...

Deep learning radiomics for the prediction of epidermal growth factor receptor mutation status based on MRI in brain metastasis from lung adenocarcinoma patients.

BMC cancer
BACKGROUND: Early and accurate identification of epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients with brain metastases is critical for guiding targeted therapy. This study aimed to develop a deep...

Identification of Novel Fourth-Generation Allosteric Inhibitors Targeting Inactive State of EGFR T790M/L858R/C797S and T790M/L858R Mutations: A Combined Machine Learning and Molecular Dynamics Approach.

The journal of physical chemistry. B
Targeted therapy with an allosteric inhibitor (AIs) is an important area of research in patients with epidermal growth factor receptor (EGFR) mutations. Current treatment of nonsmall cell lung cancer patients with EGFR mutations using orthosteric inh...

Deep learning radiopathomics predicts targeted therapy sensitivity in EGFR-mutant lung adenocarcinoma.

Journal of translational medicine
BACKGROUND: Ttyrosine kinase inhibitors (TKIs) represent the standard first-line treatment for patients with epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma. However, not all patients with EGFR mutations respond to TKIs. This study...

Identifying potential risk genes for clear cell renal cell carcinoma with deep reinforcement learning.

Nature communications
Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of renal cell carcinoma. However, our understanding of ccRCC risk genes remains limited. This gap in knowledge poses challenges to the effective diagnosis and treatment of ccRCC. To a...

Machine learning in prediction of epidermal growth factor receptor status in non-small cell lung cancer brain metastases: a systematic review and meta-analysis.

BMC cancer
BACKGROUND: Epidermal growth factor receptor (EGFR) mutations are present in 10-60% of all non-small cell lung cancer (NSCLC) patients and are associated with dismal prognosis. Lung cancer brain metastases (LCBM) are a common complication of lung can...