AI Medical Compendium Journal:
Proteins

Showing 61 to 70 of 82 articles

Gene ontology improves template selection in comparative protein docking.

Proteins
Structural characterization of protein-protein interactions is essential for our ability to study life processes at the molecular level. Computational modeling of protein complexes (protein docking) is important as the source of their structure and a...

iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.

Proteins
Quantitative evaluation of binding affinity changes upon mutations is crucial for protein engineering and drug design. Machine learning-based methods are gaining increasing momentum in this field. Due to the limited number of experimental data, using...

SPIN2: Predicting sequence profiles from protein structures using deep neural networks.

Proteins
Designing protein sequences that can fold into a given structure is a well-known inverse protein-folding problem. One important characteristic to attain for a protein design program is the ability to recover wild-type sequences given their native bac...

MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.

Proteins
Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neura...

Protein structure modeling and refinement by global optimization in CASP12.

Proteins
For protein structure modeling in the CASP12 experiment, we have developed a new protocol based on our previous CASP11 approach. The global optimization method of conformational space annealing (CSA) was applied to 3 stages of modeling: multiple sequ...

Assessment of the model refinement category in CASP12.

Proteins
We here report on the assessment of the model refinement predictions submitted to the 12th Experiment on the Critical Assessment of Protein Structure Prediction (CASP12). This is the fifth refinement experiment since CASP8 (2008) and, as with the pre...

Large-scale automated function prediction of protein sequences and an experimental case study validation on PTEN transcript variants.

Proteins
Recent advances in computing power and machine learning empower functional annotation of protein sequences and their transcript variations. Here, we present an automated prediction system UniGOPred, for GO annotations and a database of GO term predic...

Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12.

Proteins
We develop two complementary pipelines, "Zhang-Server" and "QUARK", based on I-TASSER and QUARK pipelines for template-based modeling (TBM) and free modeling (FM), and test them in the CASP12 experiment. The combination of I-TASSER and QUARK successf...

Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.

Proteins
In this study, we report the evaluation of the residue-residue contacts predicted by our three different methods in the CASP12 experiment, focusing on studying the impact of multiple sequence alignment, residue coevolution, and machine learning on co...

Simultaneous refinement of inaccurate local regions and overall structure in the CASP12 protein model refinement experiment.

Proteins
Advances in protein model refinement techniques are required as diverse sources of protein structure information are available from low-resolution experiments or informatics-based computations such as cryo-EM, NMR, homology models, or predicted resid...