AIMC Topic: Adsorption

Clear Filters Showing 51 to 60 of 167 articles

Machine learning for the adsorptive removal of ciprofloxacin using sugarcane bagasse as a low-cost biosorbent: comparison of analytic, mechanistic, and neural network modeling.

Environmental science and pollution research international
Contamination with traces of pharmaceutical compounds, such as ciprofloxacin, has prompted interest in their removal via low-cost, efficient biomass-based adsorption. In this study, classical models, a mechanistic model, and a neural network model we...

Sustainable utilization of FeO-modified activated lignite for aqueous phosphate removal and ANN modeling.

Environmental research
Lignites are widely available and cost-effective in many countries. Sustainable methods for their utilization drive innovation, potentially advancing environmental sustainability and resource efficiency. In the present study, FeO (∼25.1 nm) supported...

Predicting and refining acid modifications of biochar based on machine learning and bibliometric analysis: Specific surface area, average pore size, and total pore volume.

The Science of the total environment
Acid-modified biochar is a modified biochar material with convenient preparation, high specific surface area, and rich pore structure. It has great potential for application in the heavy metal remediation, soil amendments, and carrying catalysts. Spe...

Application of artificial intelligence in modeling of nitrate removal process using zero-valent iron nanoparticles-loaded carboxymethyl cellulose.

Environmental geochemistry and health
This study explores nitrate reduction in aqueous solutions using carboxymethyl cellulose loaded with zero-valent iron nanoparticles (Fe-CMC). The structures of this nano-composite were characterized using various techniques. Based on the characteriza...

The use of artificial neural network for modelling adsorption of Congo red onto activated hazelnut shell.

Environmental monitoring and assessment
Activated hazelnut shell (HSAC), an organic waste, was utilized for the adsorptive removal of Congo red (CR) dye from aqueous solutions, and a modelling study was conducted using artificial neural networks (ANNs). The structure and characteristic fun...

Machine learning screening of biomass precursors to prepare biomass carbon for organic wastewater purification: A review.

Chemosphere
In the past decades, the amount of biomass waste has continuously increased in human living environments, and it has attracted more and more attention. Biomass is regarded as the most high-quality and cost-effective precursor material for the prepara...

Predicting Cd(II) adsorption capacity of biochar materials using typical machine learning models for effective remediation of aquatic environments.

The Science of the total environment
The screening and design of "green" biochar materials with high adsorption capacity play a pivotal role in promoting the sustainable treatment of Cd(II)-containing wastewater. In this study, six typical machine learning (ML) models, namely Linear Reg...

A parameter estimation method for chromatographic separation process based on physics-informed neural network.

Journal of chromatography. A
Chromatographic separation processes are most often modeled in the form of partial differential equations (PDEs) to describe the complex adsorption equilibria and kinetics. However, identifying parameters in such a model requires substantial computat...

Adsorptive removal of perfluorooctanoic acid from aqueous matrices using peanut husk-derived magnetic biochar: Statistical and artificial intelligence approaches, kinetics, isotherm, and thermodynamics.

Chemosphere
Removal of perfluorooctanoic acid (PFOA) from water matrices is crucial owing to its pervasiveness and adverse ecological and human health effects. This study investigates the adsorptive removal of PFOA using magnetic biochar (MBC) derived from FeCl-...

Machine learning-driven prediction of phosphorus removal performance of metal-modified biochar and optimization of preparation processes considering water quality management objectives.

Bioresource technology
Developing an optimized and targeted design approach for metal-modified biochar based on water quality conditions and management is achievable through machine learning. This study leveraged machine learning to analyze experimental data on phosphate a...