Removal of perfluorooctanoic acid (PFOA) from water matrices is crucial owing to its pervasiveness and adverse ecological and human health effects. This study investigates the adsorptive removal of PFOA using magnetic biochar (MBC) derived from FeCl-...
Developing an optimized and targeted design approach for metal-modified biochar based on water quality conditions and management is achievable through machine learning. This study leveraged machine learning to analyze experimental data on phosphate a...
Biochar has a wide range of applications, including environmental management, such as preventing soil and water pollution, removing heavy metals from water sources, and reducing air pollution. However, there are several challenges associated with the...
Insights into key properties of biochar with a fast adsorption rate and high adsorption capacity are urgent to design biochar as an adsorbent in pollution emergency treatment. Machine learning (ML) incorporating classical theoretical adsorption model...
International journal of molecular sciences
Apr 27, 2024
This work aimed to describe the adsorption behavior of Congo red (CR) onto activated biochar material prepared from waste (). The carbon precursor was soaked with phosphoric acid, followed by pyrolysis to convert the precursor into activated biochar...
Pot experiment was performed aimed to assess the comparative role of charcoal, biochar, hydrochar and thiourea-vegetable modified biochar at 1 and 2 % doses, and <1 mm particle size on the bioavailability of Cd, Pb, As, Ni, Cu and Zn, and enhance NPK...
Biochar is commonly used to enhance the anaerobic digestion of organic waste solids and wastewater, due to its electrochemical properties, which intensify the electron transfer of microorganisms attached to its large surface area. However, it is diff...
The current investigation reports the usage of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN), the two recognized machine learning techniques in modelling tetracycline (TC) adsorption onto Cynometra ramiflora fruit ...
The successful application of gradient boosting regression (GBR) in machine learning to forecast surface area, pore volume, and yield in biomass-derived activated carbon (AC) production underscores its potential for enhancing manufacturing processes....
Environmental science and pollution research international
Mar 20, 2024
Data mining by machine learning (ML) has recently come into application in heavy metals purification from wastewater, especially in exploring lead removal by biochar that prepared using tube furnace (TF-C) and fluidized bed (FB-C) pyrolysis methods. ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.