AIMC Topic: Forecasting

Clear Filters Showing 51 to 60 of 1543 articles

Forecasting dengue across Brazil with LSTM neural networks and SHAP-driven lagged climate and spatial effects.

BMC public health
BACKGROUND: Dengue fever is a mosquito-borne viral disease that poses significant health risks and socioeconomic challenges in Brazil, necessitating accurate forecasting across its 27 federal states. With the country's diverse climate and geographica...

Advancing pearl millet yield forecasting: Comparative analysis of individual and ensemble machine learning approaches over Rajasthan, India.

PloS one
Pearl millet (Pennisetum glaucum L.) is a resilient crop known for its ability to thrive in arid and semi-arid regions, making it a crucial staple in regions prone to drought. Rajasthan, a state in India, emerged as the top producer of pearl millet. ...

Enhancing short-term algal bloom forecasting through an anti-mimicking hybrid deep learning method.

Journal of environmental management
Accurately predicting algal blooms remains a critical challenge due to their dynamic and non-stationary nature, compounded by high-frequency fluctuations and noise in monitoring data. Additionally, a common issue in time-series forecasting is data re...

Interconnections, trend analysis and forecasting of water-air temperature with water level dynamics in Blue Moon Lake Valley: A statistical and machine learning approach.

Journal of environmental management
Glacier-fed lakes serve as vital indicators of climate change, yet their temperature and water level dynamics are insufficiently studied, particularly in high-altitude basins. Examining these interactions is fundamental for the effective management o...

Forecasting trends of rising emergency department chest imaging using machine learning.

Emergency radiology
INTRODUCTION: Imaging studies in the acute care setting, such as the emergency room, have been increasing. In this report, we use the Centers for Medicare and Medicaid services (CMS) database to assess trends in ED chest CT and chest CTA imaging in E...

Flood resilience through hybrid deep learning: Advanced forecasting for Taipei's urban drainage system.

Journal of environmental management
The escalating impacts of climate change have intensified extreme rainfall events, placing urban drainage systems under unprecedented pressure and increasing flood risks. Addressing these challenges requires advanced flood mitigation strategies, opti...

Forecasting deforestation and carbon loss across New Guinea using machine learning and cellular automata.

The Science of the total environment
The island of New Guinea harbors some of the world's most biologically diverse and highly endemic tropical ecosystems. Nevertheless, progressing land-use change in the region threatens their integrity, which will adversely affect their biodiversity a...

Exploring the achievements and forecasting of SDG 3 using machine learning algorithms: Bangladesh perspective.

PloS one
BACKGROUND: Sustainable Development Goal 3 (SDG 3), focusing on ensuring healthy lives and well-being for all, holds global significance and is particularly vital for Bangladesh. Neonatal Mortality Rate (NMR), Under-5 Mortality Rate (U5MR), Maternal ...

Migrative armadillo optimization enabled a one-dimensional quantum convolutional neural network for supply chain demand forecasting.

PloS one
Demand forecasting is a quite challenging task, which is sensitive to several factors such as endogenous and exogenous parameters. In the context of supply chain management, demand forecasting aids to optimize the resources effectively. In recent yea...

Study on the prediction performance of AIDS monthly incidence in Xinjiang based on time series and deep learning models.

BMC public health
OBJECTIVE: AIDS is a highly fatal infectious disease of Class B, and Xinjiang is a high-incidence region for AIDS in China. The core of prevention and control lies in early monitoring and early warning. This study aims to identify the best model for ...