AIMC Topic: Ligands

Clear Filters Showing 101 to 110 of 659 articles

In silico assessments of the small molecular boron agents to pave the way for artificial intelligence-based boron neutron capture therapy.

European journal of medicinal chemistry
Boron neutron capture therapy (BNCT) is a highly targeted, selective and effective technique to cure various types of cancers, with less harm to the healthy cells. In principle, BNCT treatment needs to distribute the boron (B) atoms inside the tumor ...

Teaching old docks new tricks with machine learning enhanced ensemble docking.

Scientific reports
We here introduce Ensemble Optimizer (EnOpt), a machine-learning tool to improve the accuracy and interpretability of ensemble virtual screening (VS). Ensemble VS is an established method for predicting protein/small-molecule (ligand) binding. Unlike...

An artificial intelligence accelerated virtual screening platform for drug discovery.

Nature communications
Structure-based virtual screening is a key tool in early drug discovery, with growing interest in the screening of multi-billion chemical compound libraries. However, the success of virtual screening crucially depends on the accuracy of the binding p...

Enhancing protein-ligand binding affinity prediction through sequential fusion of graph and convolutional neural networks.

Journal of computational chemistry
Predicting protein-ligand binding affinity is a crucial and challenging task in structure-based drug discovery. With the accumulation of complex structures and binding affinity data, various machine-learning scoring functions, particularly those base...

From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph-Based Deep Learning.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Accurate prediction of protein-ligand binding affinities is an essential challenge in structure-based drug design. Despite recent advances in data-driven methods for affinity prediction, their accuracy is still limited, partially because they only ta...

Conformational Space Profiling Enhances Generic Molecular Representation for AI-Powered Ligand-Based Drug Discovery.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
The molecular representation model is a neural network that converts molecular representations (SMILES, Graph) into feature vectors, and is an essential module applied across a wide range of artificial intelligence-driven drug discovery scenarios. Ho...

Predicting the Binding of Small Molecules to Proteins through Invariant Representation of the Molecular Structure.

Journal of chemical information and modeling
We present a computational scheme for predicting the ligands that bind to a pocket of a known structure. It is based on the generation of a general abstract representation of the molecules, which is invariant to rotations, translations, and permutati...

A Point Cloud Graph Neural Network for Protein-Ligand Binding Site Prediction.

International journal of molecular sciences
Predicting protein-ligand binding sites is an integral part of structural biology and drug design. A comprehensive understanding of these binding sites is essential for advancing drug innovation, elucidating mechanisms of biological function, and exp...

Chemical analogue based drug design for cancer treatment targeting PI3K: integrating machine learning and molecular modeling.

Molecular diversity
Cancer is a generic term for a group of disorders defined by uncontrolled cell growth and the potential to invade or spread to other parts of the body. Gene and epigenetic alterations disrupt normal cellular control, leading to abnormal cell prolifer...

FitScore: a fast machine learning-based score for 3D virtual screening enrichment.

Journal of computer-aided molecular design
Enhancing virtual screening enrichment has become an urgent problem in computational chemistry, driven by increasingly large databases of commercially available compounds, without a commensurate drop in in vitro screening costs. Docking these large d...