AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Organic Chemicals

Showing 51 to 60 of 83 articles

Clear Filters

Quantum machine learning using atom-in-molecule-based fragments selected on the fly.

Nature chemistry
First-principles-based exploration of chemical space deepens our understanding of chemistry and might help with the design of new molecules, materials or experiments. Due to the computational cost of quantum chemistry methods and the immense number o...

Learning Molecular Representations for Medicinal Chemistry.

Journal of medicinal chemistry
The accurate modeling and prediction of small molecule properties and bioactivities depend on the critical choice of molecular representation. Decades of informatics-driven research have relied on expert-designed molecular descriptors to establish qu...

Improvement in ADMET Prediction with Multitask Deep Featurization.

Journal of medicinal chemistry
The absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties of drug candidates are important for their efficacy and safety as therapeutics. Predicting ADMET properties has therefore been of great interest to the computation...

Automated De Novo Design in Medicinal Chemistry: Which Types of Chemistry Does a Generative Neural Network Learn?

Journal of medicinal chemistry
Artificial intelligence offers promising solutions for property prediction, compound design, and retrosynthetic planning, which are expected to significantly accelerate the search for pharmacologically relevant molecules. Here, we investigate aspects...

Practical High-Quality Electrostatic Potential Surfaces for Drug Discovery Using a Graph-Convolutional Deep Neural Network.

Journal of medicinal chemistry
Inspecting protein and ligand electrostatic potential (ESP) surfaces in order to optimize electrostatic complementarity is a key activity in drug design. These ESP surfaces need to reflect the true electrostatic nature of the molecules, which typical...

Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values.

Journal of medicinal chemistry
In qualitative or quantitative studies of structure-activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns that differentiate between active and inactive compounds. Understanding model decisions is ch...

Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism.

Journal of medicinal chemistry
Hunting for chemicals with favorable pharmacological, toxicological, and pharmacokinetic properties remains a formidable challenge for drug discovery. Deep learning provides us with powerful tools to build predictive models that are appropriate for t...

Quantitative structure-property relationship of distribution coefficients of organic compounds.

SAR and QSAR in environmental research
The -octanol/buffer solution distribution coefficient (or -octanol/water partition coefficient) is of critical importance for measuring lipophilicity of drug candidates. After 4885 molecular descriptor generation, 15 molecular descriptors were select...

High-Throughput and Autonomous Grazing Incidence X-ray Diffraction Mapping of Organic Combinatorial Thin-Film Library Driven by Machine Learning.

ACS combinatorial science
High-throughput X-ray diffraction (XRD) is one of the most indispensable techniques to accelerate materials research. However, the conventional XRD analysis with a large beam spot size may not best appropriate in a case for characterizing organic mat...

Retip: Retention Time Prediction for Compound Annotation in Untargeted Metabolomics.

Analytical chemistry
Unidentified peaks remain a major problem in untargeted metabolomics by LC-MS/MS. Confidence in peak annotations increases by combining MS/MS matching and retention time. We here show how retention times can be predicted from molecular structures. Tw...