AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Protein Conformation

Showing 211 to 220 of 496 articles

Clear Filters

Deep learning to design nuclear-targeting abiotic miniproteins.

Nature chemistry
There are more amino acid permutations within a 40-residue sequence than atoms on Earth. This vast chemical search space hinders the use of human learning to design functional polymers. Here we show how machine learning enables the de novo design of ...

Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14.

Proteins
In this article, we report 3D structure prediction results by two of our best server groups ("Zhang-Server" and "QUARK") in CASP14. These two servers were built based on the D-I-TASSER and D-QUARK algorithms, which integrated four newly developed com...

Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM.

Nature methods
Structural flexibility and/or dynamic interactions with other molecules is a critical aspect of protein function. Cryogenic electron microscopy (cryo-EM) provides direct visualization of individual macromolecules sampling different conformational and...

Highly accurate protein structure prediction for the human proteome.

Nature
Protein structures can provide invaluable information, both for reasoning about biological processes and for enabling interventions such as structure-based drug development or targeted mutagenesis. After decades of effort, 17% of the total residues i...

Accurate prediction of protein structures and interactions using a three-track neural network.

Science (New York, N.Y.)
DeepMind presented notably accurate predictions at the recent 14th Critical Assessment of Structure Prediction (CASP14) conference. We explored network architectures that incorporate related ideas and obtained the best performance with a three-track ...

Highly accurate protein structure prediction with AlphaFold.

Nature
Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort, the structures of around 100,000 unique proteins have been determined, but this r...

SidechainNet: An all-atom protein structure dataset for machine learning.

Proteins
Despite recent advancements in deep learning methods for protein structure prediction and representation, little focus has been directed at the simultaneous inclusion and prediction of protein backbone and sidechain structure information. We present ...

Physics-based protein structure refinement in the era of artificial intelligence.

Proteins
Protein structure refinement is the last step in protein structure prediction pipelines. Physics-based refinement via molecular dynamics (MD) simulations has made significant progress during recent years. During CASP14, we tested a new refinement pro...

TopDomain: Exhaustive Protein Domain Boundary Metaprediction Combining Multisource Information and Deep Learning.

Journal of chemical theory and computation
Protein domains are independent, functional, and stable structural units of proteins. Accurate protein domain boundary prediction plays an important role in understanding protein structure and evolution, as well as for protein structure prediction. C...

Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations.

Cell reports methods
Structure prediction for proteins lacking homologous templates in the Protein Data Bank (PDB) remains a significant unsolved problem. We developed a protocol, C-I-TASSER, to integrate interresidue contact maps from deep neural-network learning with t...