AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Sequence Alignment

Showing 91 to 100 of 142 articles

Clear Filters

Phyloformer: Fast, Accurate, and Versatile Phylogenetic Reconstruction with Deep Neural Networks.

Molecular biology and evolution
Phylogenetic inference aims at reconstructing the tree describing the evolution of a set of sequences descending from a common ancestor. The high computational cost of state-of-the-art maximum likelihood and Bayesian inference methods limits their us...

An efficient deep learning method for amino acid substitution model selection.

Journal of evolutionary biology
Amino acid substitution models play an important role in studying the evolutionary relationships among species from protein sequences. The amino acid substitution model consists of a large number of parameters; therefore, it is estimated from hundred...

BetaAlign: a deep learning approach for multiple sequence alignment.

Bioinformatics (Oxford, England)
MOTIVATION: Multiple sequence alignments (MSAs) are extensively used in biology, from phylogenetic reconstruction to structure and function prediction. Here, we suggest an out-of-the-box approach for the inference of MSAs, which relies on algorithms ...

Learning genotype-phenotype associations from gaps in multi-species sequence alignments.

Briefings in bioinformatics
Understanding the genetic basis of phenotypic variation is fundamental to biology. Here we introduce GAP, a novel machine learning framework for predicting binary phenotypes from gaps in multi-species sequence alignments. GAP employs a neural network...

A machine-learning-based alternative to phylogenetic bootstrap.

Bioinformatics (Oxford, England)
MOTIVATION: Currently used methods for estimating branch support in phylogenetic analyses often rely on the classic Felsenstein's bootstrap, parametric tests, or their approximations. As these branch support scores are widely used in phylogenetic ana...

Effect of tokenization on transformers for biological sequences.

Bioinformatics (Oxford, England)
MOTIVATION: Deep-learning models are transforming biological research, including many bioinformatics and comparative genomics algorithms, such as sequence alignments, phylogenetic tree inference, and automatic classification of protein functions. Amo...

SPDesign: protein sequence designer based on structural sequence profile using ultrafast shape recognition.

Briefings in bioinformatics
Protein sequence design can provide valuable insights into biopharmaceuticals and disease treatments. Currently, most protein sequence design methods based on deep learning focus on network architecture optimization, while ignoring protein-specific p...

Multiple sequence alignment-based RNA language model and its application to structural inference.

Nucleic acids research
Compared with proteins, DNA and RNA are more difficult languages to interpret because four-letter coded DNA/RNA sequences have less information content than 20-letter coded protein sequences. While BERT (Bidirectional Encoder Representations from Tra...

Simulations of Sequence Evolution: How (Un)realistic They Are and Why.

Molecular biology and evolution
MOTIVATION: Simulating multiple sequence alignments (MSAs) using probabilistic models of sequence evolution plays an important role in the evaluation of phylogenetic inference tools and is crucial to the development of novel learning-based approaches...