AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Sleep

Showing 121 to 130 of 269 articles

Clear Filters

An Attention Based CNN-LSTM Approach for Sleep-Wake Detection With Heterogeneous Sensors.

IEEE journal of biomedical and health informatics
In this article, we propose an attention based convolutional neural network long short-term memory (CNN-LSTM) approach for sleep-wake detection with heterogeneous sensor data, i.e., acceleration and heart rate variability (HRV). Since the three-dimen...

A Blanket Accommodative Sleep Posture Classification System Using an Infrared Depth Camera: A Deep Learning Approach with Synthetic Augmentation of Blanket Conditions.

Sensors (Basel, Switzerland)
Surveillance of sleeping posture is essential for bed-ridden patients or individuals at-risk of falling out of bed. Existing sleep posture monitoring and classification systems may not be able to accommodate the covering of a blanket, which represent...

Inter-database validation of a deep learning approach for automatic sleep scoring.

PloS one
STUDY OBJECTIVES: Development of inter-database generalizable sleep staging algorithms represents a challenge due to increased data variability across different datasets. Sharing data between different centers is also a problem due to potential restr...

Detailed Assessment of Sleep Architecture With Deep Learning and Shorter Epoch-to-Epoch Duration Reveals Sleep Fragmentation of Patients With Obstructive Sleep Apnea.

IEEE journal of biomedical and health informatics
Traditional sleep staging with non-overlapping 30-second epochs overlooks multiple sleep-wake transitions. We aimed to overcome this by analyzing the sleep architecture in more detail with deep learning methods and hypothesized that the traditional s...

Digital phenotyping of sleep patterns among heterogenous samples of Latinx adults using unsupervised learning.

Sleep medicine
OBJECTIVE: This study aimed to identify sleep disturbance subtypes ("phenotypes") among Latinx adults based on objective sleep data using a flexible unsupervised machine learning technique.

A deep learning algorithm for sleep stage scoring in mice based on a multimodal network with fine-tuning technique.

Neuroscience research
Sleep stage scoring is important to determine sleep structure in preclinical and clinical research. The aim of this study was to develop an automatic sleep stage classification system for mice with a new deep neural network algorithm. For the purpose...

A heuristic perspective on non-variational free energy modulation at the sleep-like edge.

Bio Systems
BACKGROUND: The variational Free Energy Principle (FEP) establishes that a neural system minimizes a free energy function of their internal state through environmental sensing entailing beliefs about hidden states in their environment.

AIOSA: An approach to the automatic identification of obstructive sleep apnea events based on deep learning.

Artificial intelligence in medicine
Obstructive Sleep Apnea Syndrome (OSAS) is the most common sleep-related breathing disorder. It is caused by an increased upper airway resistance during sleep, which determines episodes of partial or complete interruption of airflow. The detection an...

Automated scoring of pre-REM sleep in mice with deep learning.

Scientific reports
Reliable automation of the labor-intensive manual task of scoring animal sleep can facilitate the analysis of long-term sleep studies. In recent years, deep-learning-based systems, which learn optimal features from the data, increased scoring accurac...

Towards More Accurate Automatic Sleep Staging via Deep Transfer Learning.

IEEE transactions on bio-medical engineering
BACKGROUND: Despite recent significant progress in the development of automatic sleep staging methods, building a good model still remains a big challenge for sleep studies with a small cohort due to the data-variability and data-inefficiency issues....