AIMC Topic: Soil Pollutants

Clear Filters Showing 21 to 30 of 117 articles

A spatial interpolation method based on 3D-CNN for soil petroleum hydrocarbon pollution.

PloS one
Petroleum hydrocarbon pollution causes significant damage to soil, so accurate prediction and early intervention are crucial for sustainable soil management. However, traditional soil analysis methods often rely on statistical methods, which means th...

Using machine learning to predict selenium content in crops: Implications for soil health and agricultural land utilization in longevity regions.

The Science of the total environment
Selenium (Se) is an indispensable trace element to human health, yet its biological tolerance threshold is relatively narrow. The potential application of machine learning methods to indirectly predict the Se content in crops across regional areas, t...

Artificial neural networks to estimate the sorption and desorption of the herbicide linuron in Brazilian soils.

Environmental pollution (Barking, Essex : 1987)
Generally, herbicides used in Brazil follow manufacturer's recommendations, which often do not consider soil attributes. Statistical models that include the physicochemical properties of the soil involved in herbicide retention processes could enable...

Interpretable machine learning reveals transport of aged microplastics in porous media: Multiple factors co-effect.

Water research
Microplastics (MPs) easily migrate into deeper soil layers, posing potential risks to subterranean habitats and groundwater. However, the mechanisms governing the vertical migration of MPs in soil, particularly aged MPs, remain unclear. In this study...

Classification of soil contamination by heavy metals (Cr, Ni, Pb, Zn) in wildfire-affected areas using laser-induced breakdown spectroscopy and machine learning.

Environmental science and pollution research international
The assessment of soil contamination by heavy metals is of high importance due to its impact on the environment and human health. Standard high-sensitivity spectroscopic techniques for this task such as atomic absorption spectrometry (AAS) and induct...

Quantifying the contributions of factors to bioaccessible Cd and Pb in soil using machine learning.

Journal of hazardous materials
The bioaccessibility of cadmium (Cd) and lead (Pb) in the gastrointestinal tract is crucial for health risk assessments of contaminated soils. However, variability in In vitro analytical conditions and soil properties introduces bias and uncertainty ...

Predictive modeling of diazinon residual concentration in soils contaminated with potentially toxic elements: a comparative study of machine learning approaches.

Biodegradation
The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Eleme...

Interpretation of machine learning-based prediction models and functional metagenomic approach to identify critical genes in HBCD degradation.

Journal of hazardous materials
Hexabromocyclododecane (HBCD) poses significant environmental risks, and identifying HBCD-degrading microbes and their enzymatic mechanisms is challenging due to the complexity of microbial interactions and metabolic pathways. This study aimed to ide...

Enhancing the estimation of cadmium content in rice leaves by integrating vegetation indices and color indices using machine learning.

Ecotoxicology and environmental safety
Cadmium (Cd) is a heavy metal recognized for its notable biotoxicity. Excessive Cd levels can have detrimental effects on crop growth, development, and yield. Real-time, rapid, and nondestructive monitoring of Cd content in leaves (LCd) is essential ...

Ensemble learning-assisted quantitative identifying influencing factors of cadmium and arsenic concentration in rice grain based multiplexed data.

Journal of hazardous materials
Rapid and accurate prediction of rice Cd (rCd) and rice As (rAs) bioaccumulation are important for assessing the safe utilization of rice. Currently, there is lack of comprehensive and systematic exploration of the factors of rCd and rAs. Herein, ens...