This study addresses the challenging task of identifying viruses within metagenomic data, which encompasses a broad array of biological samples, including animal reservoirs, environmental sources, and the human body. Traditional methods for virus ide...
Hexabromocyclododecane (HBCD) poses significant environmental risks, and identifying HBCD-degrading microbes and their enzymatic mechanisms is challenging due to the complexity of microbial interactions and metabolic pathways. This study aimed to ide...
BACKGROUND: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, composi...
One of the main goals of metagenomic studies is to describe the taxonomic diversity of microbial communities. A crucial step in metagenomic analysis is metagenomic binning, which involves the (supervised) classification or (unsupervised) clustering o...
Diabetes mellitus is a complex metabolic disorder and one of the fastest-growing global public health concerns. The gut microbiota is implicated in the pathophysiology of various diseases, including diabetes. This study utilized 16S rRNA metagenomic ...
BACKGROUND: Antibiotics are essential for medical procedures, food security, and public health. However, ill-advised usage leads to increased pathogen resistance to antimicrobial substances, posing a threat of fatal infections and limiting the benefi...
MOTIVATION: Progress in sequencing technology has led to determination of large numbers of protein sequences, and large enzyme databases are now available. Although many computational tools for enzyme annotation were developed, sequence information i...
Biosynthetic gene clusters (BGCs), key in synthesizing microbial secondary metabolites, are mostly hidden in microbial genomes and metagenomes. To unearth this vast potential, we present BGC-Prophet, a transformer-based language model for BGC predict...
There is strong interest in using the gut microbiome for Parkinson's disease (PD) diagnosis and treatment. However, a consensus on PD-associated microbiome features and a multi-study assessment of their diagnostic value is lacking. Here, we present a...
Application of machine learning-based methods to identify novel bacterial enzymes capable of degrading a wide range of xenobiotics offers enormous potential for bioremediation of toxic and carcinogenic recalcitrant xenobiotics such as pesticides, pla...