AIMC Topic: Stochastic Processes

Clear Filters Showing 41 to 50 of 244 articles

The Synchronization Analysis of Cohen-Grossberg Stochastic Neural Networks with Inertial Terms.

Computational intelligence and neuroscience
The exponential synchronization (ES) of Cohen-Grossberg stochastic neural networks with inertial terms (CGSNNIs) is studied in this paper. It is investigated in two ways. The first way is using variable substitution to transform the system to another...

Practical Exponential Stability of Impulsive Stochastic Reaction-Diffusion Systems With Delays.

IEEE transactions on cybernetics
This article studies the practical exponential stability of impulsive stochastic reaction-diffusion systems (ISRDSs) with delays. First, a direct approach and the Lyapunov method are developed to investigate the p th moment practical exponential stab...

A framework for preparing a stochastic nonlinear integrate-and-fire model for integrated information theory.

Network (Bristol, England)
This paper presents a framework for spiking neural networks to be prepared for the Integrated Information Theory (IIT) analysis, using a stochastic nonlinear integrate-and-fire model. The model includes the crucial dynamics of the all-or-none law and...

A machine learning approach to identify stochastic resonance in human perceptual thresholds.

Journal of neuroscience methods
BACKGROUND: Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of...

A stroke detection and discrimination framework using broadband microwave scattering on stochastic models with deep learning.

Scientific reports
Stroke poses an immense public health burden and remains among the primary causes of death and disability worldwide. Emergent therapy is often precluded by late or indeterminate times of onset before initial clinical presentation. Rapid, mobile, safe...

DeepCME: A deep learning framework for computing solution statistics of the chemical master equation.

PLoS computational biology
Stochastic models of biomolecular reaction networks are commonly employed in systems and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. For such models, the Kolmogor...

Aedes-AI: Neural network models of mosquito abundance.

PLoS computational biology
We present artificial neural networks as a feasible replacement for a mechanistic model of mosquito abundance. We develop a feed-forward neural network, a long short-term memory recurrent neural network, and a gated recurrent unit network. We evaluat...

Correspondence between neuroevolution and gradient descent.

Nature communications
We show analytically that training a neural network by conditioned stochastic mutation or neuroevolution of its weights is equivalent, in the limit of small mutations, to gradient descent on the loss function in the presence of Gaussian white noise. ...

Efficient Prediction of Missed Clinical Appointment Using Machine Learning.

Computational and mathematical methods in medicine
Public health and its related facilities are crucial for thriving cities and societies. The optimum utilization of health resources saves money and time, but above all, it saves precious lives. It has become even more evident in the present as the pa...

Competency of Neural Networks for the Numerical Treatment of Nonlinear Host-Vector-Predator Model.

Computational and mathematical methods in medicine
The aim of this work is to introduce a stochastic solver based on the Levenberg-Marquardt backpropagation neural networks (LMBNNs) for the nonlinear host-vector-predator model. The nonlinear host-vector-predator model is dependent upon five classes, ...