AIMC Topic: Water Purification

Clear Filters Showing 81 to 90 of 195 articles

Unlocking groundwater desalination potential for agriculture with fertilizer drawn forward osmosis: prediction and performance optimization via RSM and ANN.

Environmental science and pollution research international
The agricultural sector uses 70% of the world's freshwater. As clean water is extracted, groundwater quality decreases, making it difficult to grow crops. Brackish water desalination is a promising solution for agricultural areas, but the cost is a b...

Machine learning screening of biomass precursors to prepare biomass carbon for organic wastewater purification: A review.

Chemosphere
In the past decades, the amount of biomass waste has continuously increased in human living environments, and it has attracted more and more attention. Biomass is regarded as the most high-quality and cost-effective precursor material for the prepara...

Cefixime removal via WO/Co-ZIF nanocomposite using machine learning methods.

Scientific reports
In this research, an upgraded and environmentally friendly process involving WO/Co-ZIF nanocomposite was used for the removal of Cefixime from the aqueous solutions. Intelligent decision-making was employed using various models including Support Vect...

Prediction of COD in industrial wastewater treatment plant using an artificial neural network.

Scientific reports
In this investigation, the modeling of the Aksaray industrial wastewater treatment plant was performed using artificial neural networks with various architectures in the MATLAB software. The dataset utilized in this study was collected from the Aksar...

Wastewater treatment process enhancement based on multi-objective optimization and interpretable machine learning.

Journal of environmental management
Optimization and control of wastewater treatment process (WTP) can contribute to cost reduction and efficiency. A wastewater treatment process multi-objective optimization (WTPMO) framework is proposed in this paper to provide suggestions for decisio...

Deep learning-based flocculation sensor for automatic control of flocculant dose in sludge dewatering processes during wastewater treatment.

Water research
In sludge dewatering of most wastewater treatment plants (WWTPs), the dose of polymer flocculant is manually adjusted through direct visual inspection of the flocs without the aid of any instruments. Although there is a demand for the development of ...

Ensemble machine learning using hydrometeorological information to improve modeling of quality parameter of raw water supplying treatment plants.

Journal of environmental management
Source and raw water quality may deteriorate due to rainfall and river flow events that occur in watersheds. The effects on raw water quality are normally detected in drinking water treatment plants (DWTPs) with a time-lag after these events in the w...

Artificial neural network modeling for the oxidation kinetics of divalent manganese ions during chlorination and the role of arsenite ions in the binary/ternary systems.

Water research
This study investigated the coexistence and contamination of manganese (Mn(II)) and arsenite (As(III)) in groundwater and examined their oxidation behavior under different equilibrating parameters, including varying pH, bicarbonate (HCO) concentratio...

Adsorptive removal of perfluorooctanoic acid from aqueous matrices using peanut husk-derived magnetic biochar: Statistical and artificial intelligence approaches, kinetics, isotherm, and thermodynamics.

Chemosphere
Removal of perfluorooctanoic acid (PFOA) from water matrices is crucial owing to its pervasiveness and adverse ecological and human health effects. This study investigates the adsorptive removal of PFOA using magnetic biochar (MBC) derived from FeCl-...