Deep learning-based triple-tracer brain PET scanning in a single session: A simulation study using clinical data.
Journal:
NeuroImage
Published Date:
Apr 30, 2025
Abstract
OBJECTIVES: Multiplexed Positron Emission Tomography (PET) imaging allows simultaneous acquisition of multiple radiotracer signals, thus enhancing diagnostic capabilities, reducing scan times, and improving patient comfort. Traditional methods often require significant delays between tracer injections, leading to physiological changes and noise interference. Recent advancements, including multi-tracer compartment modeling and machine learning, provide promising solutions. This study explores the deep learning (DL)-based single-session triple-tracer brain PET imaging protocol, aiming at simplifying multi-tracer PET imaging, while reducing radiation exposure.