Comprehensive predictive modeling in subarachnoid hemorrhage: integrating radiomics and clinical variables.

Journal: Neurosurgical review
Published Date:

Abstract

Subarachnoid hemorrhage (SAH) is a severe condition with high morbidity and long-term neurological consequences. Radiomics, by extracting quantitative features from Computed Tomograhpy (CT) scans, may reveal imaging biomarkers predictive of outcomes. This study evaluates the predictive value of radiomics in SAH for multiple outcomes and compares its performance to models based on clinical data.Radiomic features were extracted from admission CTs using segmentations of brain tissue (white and gray matter) and hemorrhage. Machine learning models with cross-validation were trained using clinical data, radiomics, or both, to predict 6-month mortality, Glasgow Outcome Scale (GOS), vasospasm, and long-term hydrocephalus. SHapley Additive exPlanations (SHAP) analysis was used to interpret feature contributions.The training dataset included 403 aneurysmal SAH patients; GOS predictions used all patients, while vasospasm and hydrocephalus predictions excluded those with incomplete data or early death, leaving 328 and 332 patients, respectively. Radiomics and clinical models demonstrated comparable performance, achieving in validation set AUCs more than 85% for six-month mortality and clinical outcome, and 75% and 86% for vasospasm and hydrocephalus, respectively. In an independent cohort of 41 patients, the combined models yielded AUCs of 89% for mortality, 87% for clinical outcome, 66% for vasospasm, and 72% for hydrocephalus. SHAP analysis highlighted significant contributions of radiomic features from brain tissue and hemorrhage segmentation, alongside key clinical variables, in predicting SAH outcomes.This study underscores the potential of radiomics-based approaches for SAH outcome prediction, demonstrating predictive power comparable to traditional clinical models and enhancing understanding of SAH-related complications.Clinical trial number Not applicable.

Authors

  • Gemma Urbanos
    Research Center on Software Technologies and Multimedia Systems, Universidad Politécnica de Madrid (UPM), Madrid, 28031, Spain.
  • Ana M Castaño-León
    Servicio de Neurocirugía, Hospital Universitario 12 de Octubre, Facultad de Medicina, Departamento de Cirugía, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain.
  • Mónica Maldonado-Luna
    Servicio de Neurocirugía, Hospital Universitario 12 de Octubre, Facultad de Medicina, Departamento de Cirugía, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain.
  • Elena Salvador
    Servicio de Radiodiagnóstico, Hospital Universitario 12 de Octubre, Madrid, Spain.
  • Ana Ramos
    Servicio de Radiodiagnóstico, Hospital Universitario 12 de Octubre, Madrid, Spain.
  • Carmen Lechuga
    Servicio de Radiodiagnóstico, Hospital Universitario 12 de Octubre, Madrid, Spain.
  • César Sanz
    Research Center on Software Technologies and Multimedia Systems, Universidad Politécnica de Madrid (UPM), Madrid, 28031, Spain.
  • Eduardo Juarez
    Research Center on Software Technologies and Multimedia Systems, Universidad Politécnica de Madrid (UPM), Madrid, 28031, Spain. eduardo.juarez@upm.es.
  • Alfonso Lagares
    Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Department of Surgery, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain; NeuroSurgery Department, Hospital Universitario 12 de Octubre, Madrid, Spain. Electronic address: alfonsolagares@pdi.ucm.es.