Deep learning assessment of metastatic relapse risk from digitized breast cancer histological slides.
Journal:
Nature communications
Published Date:
Jul 1, 2025
Abstract
Accurate risk stratification is critical for guiding treatment decisions in early breast cancer. We present an artificial intelligence (AI)-based tool that analyzes digitized tumor slides to predict 5-year metastasis-free survival (MFS) in patients with estrogen receptor-positive, HER2-negative (ER + /HER2 - ) early breast cancer (EBC). Our deep learning model, RlapsRisk BC, independently predicts MFS and provides significant prognostic value beyond traditional clinico-pathological variables (C-index 0.81 vs 0.76, p < 0.05). Applying a 5% MFS event probability threshold stratifies patients into low- and high-risk groups. After dichotomization, combining RlapsRisk BC with clinico-pathological factors increases cumulative sensitivity (0.69 vs 0.63) and dynamic specificity (0.80 vs 0.76) compared to clinical factors alone. Expert analysis of high-impact regions identified by the model highlights well-established morphological features, supporting its interpretability and biological relevance.