Deep learning assessment of metastatic relapse risk from digitized breast cancer histological slides.

Journal: Nature communications
Published Date:

Abstract

Accurate risk stratification is critical for guiding treatment decisions in early breast cancer. We present an artificial intelligence (AI)-based tool that analyzes digitized tumor slides to predict 5-year metastasis-free survival (MFS) in patients with estrogen receptor-positive, HER2-negative (ER + /HER2 - ) early breast cancer (EBC). Our deep learning model, RlapsRisk BC, independently predicts MFS and provides significant prognostic value beyond traditional clinico-pathological variables (C-index 0.81 vs 0.76, p < 0.05). Applying a 5% MFS event probability threshold stratifies patients into low- and high-risk groups. After dichotomization, combining RlapsRisk BC with clinico-pathological factors increases cumulative sensitivity (0.69 vs 0.63) and dynamic specificity (0.80 vs 0.76) compared to clinical factors alone. Expert analysis of high-impact regions identified by the model highlights well-established morphological features, supporting its interpretability and biological relevance.

Authors

  • I Garberis
    INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France. ingrid-judith.GARBERIS@gustaveroussy.fr.
  • V Gaury
    Owkin, Paris, France.
  • C Saillard
    Owkin Inc, Research and Development Laboratory, 75003 Paris, France.
  • D Drubay
    Gustave Roussy, Office of Biostatistics and Epidemiology, Université Paris-Saclay, Villejuif, France.
  • K Elgui
    Owkin, Paris, France.
  • B Schmauch
    Owkin Inc, Research and Development Laboratory, 75003 Paris, France.
  • A Jaeger
    Owkin, Paris, France.
  • L Herpin
    Owkin, Paris, France.
  • J Linhart
    Owkin, Paris, France.
  • M Sapateiro
    Department of Pathology, Gustave Roussy, Paris-Saclay University, Villejuif, France.
  • F Bernigole
    Department of Pathology, Gustave Roussy, Paris-Saclay University, Villejuif, France.
  • A Kamoun
    Owkin, Paris, France.
  • A Filiot
    Owkin, Paris, France.
  • O Tchita
    Owkin, Paris, France.
  • R Dubois
    Owkin, Paris, France.
  • M Auffret
    Owkin, Paris, France.
  • L Guillou
    Owkin, Paris, France.
  • I Bousaid
    Direction de la Transformation Numérique et des Systèmes d'Information, Gustave Roussy, 94800 Villejuif, France.
  • M Azoulay
    Direction de la Transformation Numérique et des Systèmes d'Information, Institut Gustave Roussy, 94800 Villejuif, France.
  • J Lemonnier
    Unicancer R&D, Unicancer, Paris, France.
  • M Sefta
    Owkin, Paris, France.
  • S Everhard
    Unicancer R&D, Unicancer, Paris, France.
  • A Sarrazin
    Owkin, Paris, France.
  • J-F Reboud
    Owkin, Paris, France.
  • F Brulport
    Owkin, Paris, France.
  • J Dachary
    Owkin, Paris, France.
  • B Pistilli
    Department of Cancer Medicine, Gustave Roussy, Paris-Saclay University, Villejuif, France.
  • S Delaloge
    Department of Cancer Medicine, Gustave Roussy, Paris-Saclay University, Villejuif, France.
  • P Courtiol
    Owkin, Paris, France.
  • F André
    INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France.
  • V Aubert
    Owkin, Paris, France.
  • M Lacroix-Triki
    Department of Pathology, Gustave Roussy, Paris-Saclay University, Villejuif, France.