Machine learning classification of first-episode schizophrenia spectrum disorders and controls using whole brain white matter fractional anisotropy.
Journal:
BMC psychiatry
PMID:
29636016
Abstract
BACKGROUND: Early diagnosis of schizophrenia could improve the outcome of the illness. Unlike classical between-group comparisons, machine learning can identify subtle disease patterns on a single subject level, which could help realize the potential of MRI in establishing a psychiatric diagnosis. Machine learning has previously been predominantly tested on gray-matter structural or functional MRI data. In this paper we used a machine learning classifier to differentiate patients with a first episode of schizophrenia-spectrum disorder (FES) from healthy controls using diffusion tensor imaging.