AI Medical Compendium Journal:
Proteomics

Showing 1 to 10 of 29 articles

Peptide Property Prediction for Mass Spectrometry Using AI: An Introduction to State of the Art Models.

Proteomics
This review explores state of the art machine learning and deep learning models for peptide property prediction in mass spectrometry-based proteomics, including, but not limited to, models for predicting digestibility, retention time, charge state di...

Identification of Key Genes in Fetal Gut Development at Single-Cell Level by Exploiting Machine Learning Techniques.

Proteomics
The study of fetal gut development is critical due to its substantial influence on immediate neonatal and long-term adult health. Current research largely focuses on microbiome colonization, gut immunity, and barrier function, alongside the impact of...

Deep learning methods for protein function prediction.

Proteomics
Predicting protein function from protein sequence, structure, interaction, and other relevant information is important for generating hypotheses for biological experiments and studying biological systems, and therefore has been a major challenge in p...

An efficient hybrid deep learning architecture for predicting short antimicrobial peptides.

Proteomics
Short-length antimicrobial peptides (AMPs) have been demonstrated to have intensified antimicrobial activities against a wide spectrum of microbes. Therefore, exploration of novel and promising short AMPs is highly essential in developing various typ...

[Not Available].

Proteomics
RNA-dependent liquid-liquid phase separation (LLPS) proteins play critical roles in cellular processes such as stress granule formation, DNA repair, RNA metabolism, germ cell development, and protein translation regulation. The abnormal behavior of t...

Prediction of peptide hormones using an ensemble of machine learning and similarity-based methods.

Proteomics
Peptide hormones serve as genome-encoded signal transduction molecules that play essential roles in multicellular organisms, and their dysregulation can lead to various health problems. In this study, we propose a method for predicting hormonal pepti...

Model fusion for predicting unconventional proteins secreted by exosomes using deep learning.

Proteomics
Unconventional secretory proteins (USPs) are vital for cell-to-cell communication and are necessary for proper physiological processes. Unlike classical proteins that follow the conventional secretory pathway via the Golgi apparatus, these proteins a...

iDVEIP: A computer-aided approach for the prediction of viral entry inhibitory peptides.

Proteomics
With the notable surge in therapeutic peptide development, various peptides have emerged as potential agents against virus-induced diseases. Viral entry inhibitory peptides (VEIPs), a subset of antiviral peptides (AVPs), offer a promising avenue as e...

Analyzing domain features of small proteins using a machine-learning method.

Proteomics
Small proteins (SPs) are a unique group of proteins that play crucial roles in many important biological processes. Exploring the biological function of SPs is necessary. In this study, the InterPro tool and the maximum correlation method were utiliz...

A deep learning model for predicting optimal distance range in crosslinking mass spectrometry data.

Proteomics
Macromolecular assemblies play an important role in all cellular processes. While there has recently been significant progress in protein structure prediction based on deep learning, large protein complexes cannot be predicted with these approaches. ...