This study investigated the coexistence and contamination of manganese (Mn(II)) and arsenite (As(III)) in groundwater and examined their oxidation behavior under different equilibrating parameters, including varying pH, bicarbonate (HCO) concentratio...
The rapid and efficient quantification of Escherichia coli concentrations is crucial for monitoring water quality. Remote sensing techniques and machine learning algorithms have been used to detect E. coli in water and estimate its concentrations. Th...
Membrane breakage can lead to filtration failure, which allows harmful substances to enter the effluent, posing potential hazards to human health and the environment. This study is an innovative combination of fluorescence and ultraviolet-visible (UV...
Groundwater models are essential for understanding aquifer systems behavior and effective water resources spatio-temporal distributions, yet they are often hindered by challenges related to model assumptions, parametrization, uncertainty, and computa...
Reconstructing transient states presents significant challenges, particularly within complex pipe networks. These challenges arise due to nonlinear behaviours, inherent uncertainties in the system, and limitations in data availability. This work prop...
Artificial intelligence (AI) is expected to transform many scientific disciplines, with the potential to significantly accelerate scientific discovery. This perspective calls for the development of data-centric water engineering to tackle water chall...
This study aimed to develop surface complexation modeling-machine learning (SCM-ML) hybrid model for chromate and arsenate adsorption on goethite. The feasibility of two SCM-ML hybrid modeling approaches was investigated. Firstly, we attempted to uti...
Natural organic matter (NOM) is a major sink of radicals in advanced oxidation processes (AOPs) and understanding the transformation of NOM is important in water treatment. By using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR ...
Total phosphorus (TP) is non-optically active, thus TP concentration (CTP) estimation using remote sensing still exists grand challenge. This study developed a deep neural network model (DNN) for CTP estimation with synchronous in-situ measurements a...
Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine l...