AIMC Topic: Adsorption

Clear Filters Showing 31 to 40 of 167 articles

Simulation, prediction and optimization for synthesis and heavy metals adsorption of schwertmannite by machine learning.

Environmental research
Due to its sea urchin-like structure, Schwertmannite is commonly applied for heavy metals (HMs) pollutant adsorption. The adsorption influence parameters of Schwertmannite are numerous, the traditional experimental enumeration is powerless. In recent...

Artificial intelligence-driven assessment of critical inputs for lead adsorption by agro-food wastes in wastewater treatment.

Chemosphere
Due to environmental concerns and economic value, the adsorption process using agricultural wastes is one of the promising methods to remove lead (Pb) from contaminated water. The relationships between agricultural waste properties, adsorption condit...

Physics-Informed Neural Network for monitoring the sulfate ion adsorption process using particle filter.

Anais da Academia Brasileira de Ciencias
Fixed-bed columns are a well-established water purification technology. Several models have been constructed over the decades to scale up and predict the breakthrough curve of an adsorption column varying the flow rate, length, and initial concentrat...

Optimisation led energy-efficient arsenite and arsenate adsorption on various materials with machine learning.

Water research
The contamination of water by arsenic (As) poses a substantial environmental challenge with far-reaching influence on human health. Accurately predicting adsorption capacities of arsenite (As(III)) and arsenate (As(V)) on different materials is cruci...

Machine learning integration with response surface methodology to enhance the removal efficacy of arsenate (V) through sulfur-functionalized mxene coated QPPO/PVA AEM.

Journal of environmental management
Arsenic, a poisonous and carcinogenic heavy metal in drinking water, presents severe health risks to humans, including skin lesions, neurological damage, and circulatory disorders. Despite extensive research efforts have been carried out on removing ...

Nanomaterial Texture-Based Machine Learning of Ciprofloxacin Adsorption on Nanoporous Carbon.

International journal of molecular sciences
Drug substances in water bodies and groundwater have become a significant threat to the surrounding environment. This study focuses on the ability of the nanoporous carbon materials to remove ciprofloxacin from aqueous solutions under specific experi...

Biosorption of cobalt and chromium from wastewater using manganese dioxide and iron oxide nanoparticles loaded on cellulose-based biochar: Modeling and optimization with machine learning (artificial neural network).

International journal of biological macromolecules
In this study, two nanomaterials with excellent adsorption capacities were developed to remove heavy metals efficiently from wastewater. Manganese dioxide MnO nanoparticles and iron oxide FeO nanoparticles were successfully synthesized using cassava ...

Artificial intelligence modeling and experimental studies of oily pollutants uptake from water using ZIF-8/carbon fiber nanostructure.

Journal of environmental management
In this study, the experimental and modeling of oily pollutants (crude oil, asphaltene, and maltene) uptake by ZIF-8/carbon fiber nanostructure was investigated. The influence of pollutant type, concentration, ionic strength, and sorption time on upt...

A novel interpretable machine learning and metaheuristic-based protocol to predict and optimize ciprofloxacin antibiotic adsorption with nano-adsorbent.

Journal of environmental management
The existence of antibiotics in water sources poses substantial hazards to both the environment and public health. To effectively monitor and combat this problem, accurate predictive models are essential. This research focused on employing machine le...

Evaluating machine learning performance in predicting sodium adsorption ratio for sustainable soil-water management in the eastern Mediterranean.

Journal of environmental management
Soil salinization is a critical global issue for sustainable agriculture, impacting crop yields and posing a threat to achieving the Sustainable Development Goal (SDG) of ensuring food security. It is necessary to monitor it in detail and uncover its...