AIMC Topic: Amino Acid Sequence

Clear Filters Showing 241 to 250 of 694 articles

ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides.

Scientific reports
Although advancing the therapeutic alternatives for treating deadly cancers has gained much attention globally, still the primary methods such as chemotherapy have significant downsides and low specificity. Most recently, Anticancer peptides (ACPs) h...

Protein Fold Recognition Based on Auto-Weighted Multi-View Graph Embedding Learning Model.

IEEE/ACM transactions on computational biology and bioinformatics
Protein fold recognition is critical for studies of the protein structure prediction and drug design. Several methods have been proposed to obtain discriminative features from the protein sequences for fold recognition. However, the ensemble methods ...

Enhanced Protein Structural Class Prediction Using Effective Feature Modeling and Ensemble of Classifiers.

IEEE/ACM transactions on computational biology and bioinformatics
Protein Secondary Structural Class (PSSC) information is important in investigating further challenges of protein sequences like protein fold recognition, protein tertiary structure prediction, and analysis of protein functions for drug discovery. Id...

Drug-Target Interaction Prediction: End-to-End Deep Learning Approach.

IEEE/ACM transactions on computational biology and bioinformatics
The discovery of potential Drug-Target Interactions (DTIs) is a determining step in the drug discovery and repositioning process, as the effectiveness of the currently available antibiotic treatment is declining. Although putting efforts on the tradi...

A Deep Learning Framework for Gene Ontology Annotations With Sequence- and Network-Based Information.

IEEE/ACM transactions on computational biology and bioinformatics
Knowledge of protein functions plays an important role in biology and medicine. With the rapid development of high-throughput technologies, a huge number of proteins have been discovered. However, there are a great number of proteins without function...

De novo protein design by deep network hallucination.

Nature
There has been considerable recent progress in protein structure prediction using deep neural networks to predict inter-residue distances from amino acid sequences. Here we investigate whether the information captured by such networks is sufficiently...

Evaluation of Deep Neural Network ProSPr for Accurate Protein Distance Predictions on CASP14 Targets.

International journal of molecular sciences
The field of protein structure prediction has recently been revolutionized through the introduction of deep learning. The current state-of-the-art tool AlphaFold2 can predict highly accurate structures; however, it has a prohibitively long inference ...

MemDis: Predicting Disordered Regions in Transmembrane Proteins.

International journal of molecular sciences
Transmembrane proteins (TMPs) play important roles in cells, ranging from transport processes and cell adhesion to communication. Many of these functions are mediated by intrinsically disordered regions (IDRs), flexible protein segments without a wel...

Learning the local landscape of protein structures with convolutional neural networks.

Journal of biological physics
One fundamental problem of protein biochemistry is to predict protein structure from amino acid sequence. The inverse problem, predicting either entire sequences or individual mutations that are consistent with a given protein structure, has received...