AIMC Topic: Brain-Computer Interfaces

Clear Filters Showing 41 to 50 of 643 articles

Graph convolution network-based eeg signal analysis: a review.

Medical & biological engineering & computing
With the advancement of artificial intelligence technology, more and more effective methods are being used to identify and classify Electroencephalography (EEG) signals to address challenges in healthcare and brain-computer interface fields. The appl...

Unsupervised, piecewise linear decoding enables an accurate prediction of muscle activity in a multi-task brain computer interface.

Journal of neural engineering
Creating an intracortical brain computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI de...

Classification of Imagined Speech Signals Using Functional Connectivity Graphs and Machine Learning Models.

Brain topography
EEG involves recording electrical activity generated by the brain through electrodes placed on the scalp. Imagined speech classification has emerged as an essential area of research in brain-computer interfaces (BCIs). Despite significant advances, a...

The 'Sandwich' meta-framework for architecture agnostic deep privacy-preserving transfer learning for non-invasive brainwave decoding.

Journal of neural engineering
. Machine learning has enhanced the performance of decoding signals indicating human behaviour. Electroencephalography (EEG) brainwave decoding, as an exemplar indicating neural activity and human thoughts non-invasively, has been helpful in neural a...

TFTL: A Task-Free Transfer Learning Strategy for EEG-Based Cross-Subject and Cross-Dataset Motor Imagery BCI.

IEEE transactions on bio-medical engineering
OBJECTIVE: Motor imagery-based brain-computer interfaces (MI-BCIs) have been playing an increasingly vital role in neural rehabilitation. However, the long-term task-based calibration required for enhanced model performance leads to an unfriendly use...

Enhancing Domain Diversity of Transfer Learning-Based SSVEP-BCIs by the Reconstruction of Channel Correlation.

IEEE transactions on bio-medical engineering
OBJECTIVE: The application of transfer learning, specifically pre-training and fine-tuning, in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) has been demonstrated to effectively improve the classification perform...

Parallel convolutional neural network and empirical mode decomposition for high accuracy in motor imagery EEG signal classification.

PloS one
In recent years, the utilization of motor imagery (MI) signals derived from electroencephalography (EEG) has shown promising applications in controlling various devices such as wheelchairs, assistive technologies, and driverless vehicles. However, de...

A Synergy of Convolutional Neural Networks for Sensor-Based EEG Brain-Computer Interfaces to Enhance Motor Imagery Classification.

Sensors (Basel, Switzerland)
Enhancing motor disability assessment and its imagery classification is a significant concern in contemporary medical practice, necessitating reliable solutions to improve patient outcomes. One promising avenue is the use of brain-computer interfaces...

A hybrid CNN model for classification of motor tasks obtained from hybrid BCI system.

Scientific reports
The Hybrid-Brain Computer Interface (BCI) has shown improved performance, especially in classifying multi-class data. Two non-invasive BCI modules are combined to achieve an improved classification which are Electroencephalogram (EEG) and functional ...

Multi-Scale Pyramid Squeeze Attention Similarity Optimization Classification Neural Network for ERP Detection.

Neural networks : the official journal of the International Neural Network Society
Event-related potentials (ERPs) can reveal brain activity elicited by external stimuli. Innovative methods to decode ERPs could enhance the accuracy of brain-computer interface (BCI) technology and promote the understanding of cognitive processes. Th...