AIMC Topic: Computational Biology

Clear Filters Showing 211 to 220 of 4396 articles

DGCLCMI: a deep graph collaboration learning method to predict circRNA-miRNA interactions.

BMC biology
BACKGROUND: Numerous studies have shown that circRNA can act as a miRNA sponge, competitively binding to miRNAs, thereby regulating gene expression and disease progression. Due to the high cost and time-consuming nature of traditional wet lab experim...

Repetitive training enhances the pattern recognition capability of cultured neural networks.

PLoS computational biology
Cultured neural networks in vitro have demonstrated the biocomputing capability to recognize patterns. However, the underlying mechanisms behind information processing and pattern recognition remain less understood. Here, we developed an in vitro neu...

scRSSL: Residual semi-supervised learning with deep generative models to automatically identify cell types.

IET systems biology
Single-cell sequencing (scRNA-seq) allows researchers to study cellular heterogeneity in individual cells. In single-cell transcriptomics analysis, identifying the cell type of individual cells is a key task. At present, single-cell datasets often fa...

Computational models for prediction of m6A sites using deep learning.

Methods (San Diego, Calif.)
RNA modifications play a crucial role in enhancing the structural and functional diversity of RNA molecules and regulating various stages of the RNA life cycle. Among these modifications, N6-Methyladenosine (m6A) is the most common internal modificat...

The prediction of RNA-small molecule binding sites in RNA structures based on geometric deep learning.

International journal of biological macromolecules
Biological interactions between RNA and small-molecule ligands play a crucial role in determining the specific functions of RNA, such as catalysis and folding, and are essential for guiding drug design in the medical field. Accurately predicting the ...

Bioinformatics Approach to Identifying Molecular Targets of Isoliquiritigenin Affecting Chronic Obstructive Pulmonary Disease: A Machine Learning Pharmacology Study.

International journal of molecular sciences
To identify the molecular targets and possible mechanisms of isoliquiritigenin (ISO) in affecting chronic obstructive pulmonary disease (COPD) by regulating the glycolysis and phagocytosis of alveolar macrophages (AM). Datasets GSE130928 and GSE13896...

Transfer learning of multicellular organization via single-cell and spatial transcriptomics.

PLoS computational biology
Biological tissues exhibit complex gene expression and multicellular patterns that are valuable to dissect. Single-cell RNA sequencing (scRNA-seq) provides full coverages of genes, but lacks spatial information, whereas spatial transcriptomics (ST) m...

Integrative analysis of signaling and metabolic pathways, immune infiltration patterns, and machine learning-based diagnostic model construction in major depressive disorder.

Scientific reports
Major depressive disorder (MDD) is a multifactorial disorder involving genetic and environmental factors, with unclear pathogenesis. This study aims to explore the pathogenic pathway of MDD and its relationship with immune responses and to discover i...

A random forest-based predictive model for classifying BRCA1 missense variants: a novel approach for evaluating the missense mutations effect.

Journal of human genetics
The right classification of variants is the key to pre-symptomatic detection of disease and conducting preventive actions. Since BRCA1 has a high incidence and penetrance in breast and ovarian cancers, a high-performance predictive tool can be employ...