AIMC Topic: Computational Biology

Clear Filters Showing 211 to 220 of 4246 articles

DRGCL: Drug Repositioning via Semantic-Enriched Graph Contrastive Learning.

IEEE journal of biomedical and health informatics
Drug repositioning greatly reduces drug development costs and time by discovering new indications for existing drugs. With the development of technology and large-scale biological databases, computational drug repositioning has increasingly attracted...

Dual Representation Learning for Predicting Drug-Side Effect Frequency Using Protein Target Information.

IEEE journal of biomedical and health informatics
Knowledge of unintended effects of drugs is critical in assessing the risk of treatment and in drug repurposing. Although numerous existing studies predict drug-side effect presence, only four of them predict the frequency of the side effects. Unfort...

Prediction of Drug-Target Interactions With High- Quality Negative Samples and a Network-Based Deep Learning Framework.

IEEE journal of biomedical and health informatics
Identification of drug-target interactions (DTIs) plays a crucial role in drug discovery. Compared to traditional experimental methods, computer-based methods for predicting DTIs can significantly reduce the time and financial burdens of drug develop...

MDTL-ACP: Anticancer Peptides Prediction Based on Multi-Domain Transfer Learning.

IEEE journal of biomedical and health informatics
Anticancer peptides (ACPs) have emerged as one of the most promising therapeutic agents for cancer treatment. They are bioactive peptides featuring broad-spectrum activity and low drug-resistance. The discovery of ACPs via traditional biochemical met...

Decoding Drug Response With Structurized Gridding Map-Based Cell Representation.

IEEE journal of biomedical and health informatics
A thorough understanding of cell-line drug response mechanisms is crucial for drug development, repurposing, and resistance reversal. While targeted anticancer therapies have shown promise, not all cancers have well-established biomarkers to stratify...

Enhancing Drug Repositioning Through Local Interactive Learning With Bilinear Attention Networks.

IEEE journal of biomedical and health informatics
Drug repositioning has emerged as a promising strategy for identifying new therapeutic applications for existing drugs. In this study, we present DRGBCN, a novel computational method that integrates heterogeneous information through a deep bilinear a...

TrGPCR: GPCR-Ligand Binding Affinity Prediction Based on Dynamic Deep Transfer Learning.

IEEE journal of biomedical and health informatics
Predicting G protein-coupled receptor (GPCR) -ligand binding affinity plays a crucial role in drug development. However, determining GPCR-ligand binding affinities is time-consuming and resource-intensive. Although many studies used data-driven metho...

TARSL: Triple-Attention Cross-Network Representation Learning to Predict Synthetic Lethality for Anti-Cancer Drug Discovery.

IEEE journal of biomedical and health informatics
Cancer is a multifaceted disease that results from co-mutations of multi biological molecules. A promising strategy for cancer therapy involves in exploiting the phenomenon of Synthetic Lethality (SL) by targeting the SL partner of cancer gene. Since...

PredIDR2: Improving accuracy of protein intrinsic disorder prediction by updating deep convolutional neural network and supplementing DisProt data.

International journal of biological macromolecules
Intrinsically disordered proteins (IDPs) or regions (IDRs) are widespread in proteomes, and involved in several important biological processes and implicated in many diseases. Many computational methods for IDR prediction are being developed to decre...

StackTHP: A stacking ensemble model for accurate prediction of tumor-homing peptides in cancer therapy.

Computers in biology and medicine
The tumor-homing peptides (THPs) have emerged as one of the attractive resources for targeted cancer therapy, being able to bind and penetrate tumor cells selectively while ignoring adjacent healthy tissues. Therefore, the computational models to pre...