AIMC Topic: Coronary Stenosis

Clear Filters Showing 41 to 50 of 119 articles

Diagnostic performance of deep learning-based vessel extraction and stenosis detection on coronary computed tomography angiography for coronary artery disease: a multi-reader multi-case study.

La Radiologia medica
BACKGROUND: Post-processing and interpretation of coronary CT angiography (CCTA) imaging are time-consuming and dependent on the reader's experience. An automated deep learning (DL)-based imaging reconstruction and diagnosis system was developed to i...

A deep learning-based fully automatic and clinical-ready framework for regional myocardial segmentation and myocardial ischemia evaluation.

Medical & biological engineering & computing
Myocardial ischemia diagnosis with CT perfusion imaging (CTP) is important in coronary artery disease management. Traditional analysis procedure is time-consuming and error-prone due to the semi-manual and operator-dependent nature. To improve the di...

Deep learning-based noise reduction for coronary CT angiography: using four-dimensional noise-reduction images as the ground truth.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: To assess low-contrast areas such as plaque and coronary artery stenosis, coronary computed tomography angiography (CCTA) needs to provide images with lower noise without increasing radiation doses.

Deep learning-based prediction of coronary artery stenosis resistance.

American journal of physiology. Heart and circulatory physiology
Coronary artery stenosis resistance (SR) is a key factor for noninvasive calculations of fractional flow reserve derived from coronary CT angiography (FFR). Existing computational fluid dynamics (CFD) methods, including three-dimensional (3-D) comput...

Deep learning prediction of quantitative coronary angiography values using myocardial perfusion images with a CZT camera.

Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
PURPOSE: Evaluate the prediction of quantitative coronary angiography (QCA) values from MPI, by means of deep learning.

Automatic coronary artery segmentation and diagnosis of stenosis by deep learning based on computed tomographic coronary angiography.

European radiology
OBJECTIVES: Coronary computed tomography angiography (CCTA) has rapidly developed in the coronary artery disease (CAD) field. However, manual coronary artery tree segmentation and reconstruction are time-consuming and tedious. Deep learning algorithm...

Diagnostic performance of deep learning algorithm for analysis of computed tomography myocardial perfusion.

European journal of nuclear medicine and molecular imaging
PURPOSE: To evaluate the diagnostic accuracy of a deep learning (DL) algorithm predicting hemodynamically significant coronary artery disease (CAD) by using a rest dataset of myocardial computed tomography perfusion (CTP) as compared to invasive eval...