AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Drug Design

Showing 341 to 350 of 538 articles

Clear Filters

Applications of machine learning in GPCR bioactive ligand discovery.

Current opinion in structural biology
GPCRs constitute the largest druggable family having targets for 475 Food and Drug Administration (FDA) approved drugs. As GPCRs are of great interest to pharmaceutical industry, enormous efforts are being expended to find relevant and potent GPCR li...

Autonomous Molecular Design: Then and Now.

ACS applied materials & interfaces
The success of deep machine learning in processing of large amounts of data, for example, in image or voice recognition and generation, raises the possibilities that these tools can also be applied for solving complex problems in materials science. I...

Automated discovery of GPCR bioactive ligands.

Current opinion in structural biology
While G-protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins, structures and endogenous ligands of a large portion of GPCRs remain unknown. Because of the involvement of GPCRs in various signaling pathways and physiolog...

Elucidating the druggability of the human proteome with eFindSite.

Journal of computer-aided molecular design
Identifying the viability of protein targets is one of the preliminary steps of drug discovery. Determining the ability of a protein to bind drugs in order to modulate its function, termed the druggability, requires a non-trivial amount of time and r...

GuacaMol: Benchmarking Models for de Novo Molecular Design.

Journal of chemical information and modeling
De novo design seeks to generate molecules with required property profiles by virtual design-make-test cycles. With the emergence of deep learning and neural generative models in many application areas, models for molecular design based on neural net...

Discovery of small molecule binders of human FSHR(TMD) with novel structural scaffolds by integrating structural bioinformatics and machine learning algorithms.

Journal of molecular graphics & modelling
BACKGROUND: The activation of follicle stimulating hormone receptor (FSHR) by FSH and the consequent downstream signaling activities are crucial for reproductive health. The role of FSHR in tumor progression as well as osteoporosis advancement has al...

De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping.

Journal of chemical information and modeling
Here we show that Generative Topographic Mapping (GTM) can be used to explore the latent space of the SMILES-based autoencoders and generate focused molecular libraries of interest. We have built a sequence-to-sequence neural network with Bidirection...

Shape-Based Generative Modeling for de Novo Drug Design.

Journal of chemical information and modeling
In this work, we propose a machine learning approach to generate novel molecules starting from a seed compound, its three-dimensional (3D) shape, and its pharmacophoric features. The pipeline draws inspiration from generative models used in image ana...

Deep learning for molecular generation.

Future medicinal chemistry
De novo drug design aims to generate novel chemical compounds with desirable chemical and pharmacological properties from scratch using computer-based methods. Recently, deep generative neural networks have become a very active research frontier in d...