Propulsion of swimming robots at the surface and underwater is largely dominated by rotary propellers due to high thrust, but at the cost of low efficiency. Due to their inherently high speed turning motion, sharp propeller blades and generated noise...
In this article, we propose a soft eel robot design using soft pneumatic actuators that mimic eel muscles. Four pairs of soft actuators are used to construct the eel robot body. Pulse signals with suitable shifting phases are utilized to control deli...
Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body's kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to...
This study presents a flexible aquatic swimming robot, which is a promising candidate for underwater search and detection missions. The robot is a living eel fitted with a wireless electronic backpack stimulator attached to its dorsal region. Leverag...