AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Genome

Showing 11 to 20 of 172 articles

Clear Filters

Accurate top protein variant discovery via low-N pick-and-validate machine learning.

Cell systems
A strategy to obtain the greatest number of best-performing variants with least amount of experimental effort over the vast combinatorial mutational landscape would have enormous utility in boosting resource producibility for protein engineering. Tow...

Coding genomes with gapped pattern graph convolutional network.

Bioinformatics (Oxford, England)
MOTIVATION: Genome sequencing technologies reveal a huge amount of genomic sequences. Neural network-based methods can be prime candidates for retrieving insights from these sequences because of their applicability to large and diverse datasets. Howe...

From tradition to innovation: conventional and deep learning frameworks in genome annotation.

Briefings in bioinformatics
Following the milestone success of the Human Genome Project, the 'Encyclopedia of DNA Elements (ENCODE)' initiative was launched in 2003 to unearth information about the numerous functional elements within the genome. This endeavor coincided with the...

EvoAug-TF: extending evolution-inspired data augmentations for genomic deep learning to TensorFlow.

Bioinformatics (Oxford, England)
SUMMARY: Deep neural networks (DNNs) have been widely applied to predict the molecular functions of the non-coding genome. DNNs are data hungry and thus require many training examples to fit data well. However, functional genomics experiments typical...

DeepReg: a deep learning hybrid model for predicting transcription factors in eukaryotic and prokaryotic genomes.

Scientific reports
Deep learning models (DLMs) have gained importance in predicting, detecting, translating, and classifying a diversity of inputs. In bioinformatics, DLMs have been used to predict protein structures, transcription factor-binding sites, and promoters. ...

KEGG orthology prediction of bacterial proteins using natural language processing.

BMC bioinformatics
BACKGROUND: The advent of high-throughput technologies has led to an exponential increase in uncharacterized bacterial protein sequences, surpassing the capacity of manual curation. A large number of bacterial protein sequences remain unannotated by ...

Genome-scale metabolic models in translational medicine: the current status and potential of machine learning in improving the effectiveness of the models.

Molecular omics
The genome-scale metabolic model (GEM) has emerged as one of the leading modeling approaches for systems-level metabolic studies and has been widely explored for a broad range of organisms and applications. Owing to the development of genome sequenci...

Machine learning for the advancement of genome-scale metabolic modeling.

Biotechnology advances
Constraint-based modeling (CBM) has evolved as the core systems biology tool to map the interrelations between genotype, phenotype, and external environment. The recent advancement of high-throughput experimental approaches and multi-omics strategies...

Classification accuracy of machine learning algorithms for Chinese local cattle breeds using genomic markers.

Yi chuan = Hereditas
Accurate breed classification is required for the conservation and utilization of farm animal genetic resources. Traditional classification methods mainly rely on phenotypic characterization. However, it is difficult to distinguish between the highly...

Encoding innate ability through a genomic bottleneck.

Proceedings of the National Academy of Sciences of the United States of America
Animals are born with extensive innate behavioral capabilities, which arise from neural circuits encoded in the genome. However, the information capacity of the genome is orders of magnitude smaller than that needed to specify the connectivity of an ...