AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Ligands

Showing 61 to 70 of 599 articles

Clear Filters

A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain.

Cell reports methods
Artificial intelligence (AI) and deep learning technologies hold promise for identifying effective drugs for human diseases, including pain. Here, we present an interpretable deep-learning-based ligand image- and receptor's three-dimensional (3D)-str...

Development of a machine learning-based target-specific scoring function for structure-based binding affinity prediction for human dihydroorotate dehydrogenase inhibitors.

Journal of computational chemistry
Human dihydroorotate dehydrogenase (hDHODH) is a flavin mononucleotide-dependent enzyme that can limit de novo pyrimidine synthesis, making it a therapeutic target for diseases such as autoimmune disorders and cancer. In this study, using the docking...

A Machine Learning Algorithm Suggests Repurposing Opportunities for Targeting Selected GPCRs.

International journal of molecular sciences
Repurposing utilizes existing drugs with known safety profiles and discovers new uses by combining experimental and computational approaches. The integration of computational methods has greatly advanced drug repurposing, offering a rational approach...

Prediction of aptamer affinity using an artificial intelligence approach.

Journal of materials chemistry. B
Aptamers are oligonucleotide sequences that can connect to particular target molecules, similar to monoclonal antibodies. They can be chosen by systematic evolution of ligands by exponential enrichment (SELEX), and are modifiable and can be synthesiz...

Combined Physics- and Machine-Learning-Based Method to Identify Druggable Binding Sites Using SILCS-Hotspots.

Journal of chemical information and modeling
Identifying druggable binding sites on proteins is an important and challenging problem, particularly for cryptic, allosteric binding sites that may not be obvious from X-ray, cryo-EM, or predicted structures. The Site-Identification by Ligand Compet...

Automated design of multi-target ligands by generative deep learning.

Nature communications
Generative deep learning models enable data-driven de novo design of molecules with tailored features. Chemical language models (CLM) trained on string representations of molecules such as SMILES have been successfully employed to design new chemical...

Linear symmetric self-selecting 14-bit kinetic molecular memristors.

Nature
Artificial Intelligence (AI) is the domain of large resource-intensive data centres that limit access to a small community of developers. Neuromorphic hardware promises greatly improved space and energy efficiency for AI but is presently only capable...

In silico assessments of the small molecular boron agents to pave the way for artificial intelligence-based boron neutron capture therapy.

European journal of medicinal chemistry
Boron neutron capture therapy (BNCT) is a highly targeted, selective and effective technique to cure various types of cancers, with less harm to the healthy cells. In principle, BNCT treatment needs to distribute the boron (B) atoms inside the tumor ...

Teaching old docks new tricks with machine learning enhanced ensemble docking.

Scientific reports
We here introduce Ensemble Optimizer (EnOpt), a machine-learning tool to improve the accuracy and interpretability of ensemble virtual screening (VS). Ensemble VS is an established method for predicting protein/small-molecule (ligand) binding. Unlike...

An artificial intelligence accelerated virtual screening platform for drug discovery.

Nature communications
Structure-based virtual screening is a key tool in early drug discovery, with growing interest in the screening of multi-billion chemical compound libraries. However, the success of virtual screening crucially depends on the accuracy of the binding p...