AI Medical Compendium Topic:
Molecular Docking Simulation

Clear Filters Showing 421 to 430 of 596 articles

MathDL: mathematical deep learning for D3R Grand Challenge 4.

Journal of computer-aided molecular design
We present the performances of our mathematical deep learning (MathDL) models for D3R Grand Challenge 4 (GC4). This challenge involves pose prediction, affinity ranking, and free energy estimation for beta secretase 1 (BACE) as well as affinity ranki...

Exploring fragment-based target-specific ranking protocol with machine learning on cathepsin S.

Journal of computer-aided molecular design
Cathepsin S (CatS), a member of cysteine cathepsin proteases, has been well studied due to its significant role in many pathological processes, including arthritis, cancer and cardiovascular diseases. CatS inhibitors have been included in D3R-GC3 for...

ALADDIN: Docking Approach Augmented by Machine Learning for Protein Structure Selection Yields Superior Virtual Screening Performance.

Molecular informatics
Protein flexibility and solvation pose major challenges to docking algorithms and scoring functions. One established strategy for addressing these challenges is to use multiple protein conformations for docking (all-against-all ensemble docking). Rec...

In-Silico Molecular Binding Prediction for Human Drug Targets Using Deep Neural Multi-Task Learning.

Genes
In in-silico prediction for molecular binding of human genomes, promising results have been demonstrated by deep neural multi-task learning due to its strength in training tasks with imbalanced data and its ability to avoid over-fitting. Although the...

Incorporating Explicit Water Molecules and Ligand Conformation Stability in Machine-Learning Scoring Functions.

Journal of chemical information and modeling
Structure-based drug design is critically dependent on accuracy of molecular docking scoring functions, and there is of significant interest to advance scoring functions with machine learning approaches. In this work, by judiciously expanding the tra...

A Machine Learning-Based Prediction Platform for P-Glycoprotein Modulators and Its Validation by Molecular Docking.

Cells
P-glycoprotein (P-gp) is an important determinant of multidrug resistance (MDR) because its overexpression is associated with increased efflux of various established chemotherapy drugs in many clinically resistant and refractory tumors. This leads to...

Identification of potential histone deacetylase1 (HDAC1) inhibitors using multistep virtual screening approach including SVM model, pharmacophore modeling, molecular docking and biological evaluation.

Journal of biomolecular structure & dynamics
Histone Deacetylases (HDACs) play a significant role in the regulation of gene expression by modifying histones and non-histone substrates. Since they are key regulators in the reversible epigenetic mechanism, they are considered as promising drug ta...

Target-Specific Prediction of Ligand Affinity with Structure-Based Interaction Fingerprints.

Journal of chemical information and modeling
Discovery and optimization of small molecule inhibitors as therapeutic drugs have immensely benefited from rational structure-based drug design. With recent advances in high-resolution structure determination, computational power, and machine learnin...

Artificial Intelligence Approach To Investigate the Longevity Drug.

The journal of physical chemistry letters
Longevity is a very important and interesting topic, and has been demonstrated to be related to longevity. We combined network pharmacology, machine learning, deep learning, and molecular dynamics (MD) simulation to investigate potent lead drugs. Re...