AIMC Topic: Otitis Media

Clear Filters Showing 1 to 10 of 22 articles

A multimodal machine learning algorithm improved diagnostic accuracy for otitis media in a school aged Aboriginal population.

Journal of biomedical informatics
OBJECTIVE: Otitis Media (OM) - ear infection - can lead to hearing loss and associated developmental delay. There are several subgroups of OM which can be difficult to diagnose accurately, even for experienced clinicians. AI and machine learning algo...

Deep learning multi-classification of middle ear diseases using synthetic tympanic images.

Acta oto-laryngologica
BACKGROUND: Recent advances in artificial intelligence have facilitated the automatic diagnosis of middle ear diseases using endoscopic tympanic membrane imaging.

A 3D and Explainable Artificial Intelligence Model for Evaluation of Chronic Otitis Media Based on Temporal Bone Computed Tomography: Model Development, Validation, and Clinical Application.

Journal of medical Internet research
BACKGROUND: Temporal bone computed tomography (CT) helps diagnose chronic otitis media (COM). However, its interpretation requires training and expertise. Artificial intelligence (AI) can help clinicians evaluate COM through CT scans, but existing mo...

Artificial Intelligence and Pediatric Otolaryngology.

Otolaryngologic clinics of North America
Artificial intelligence (AI) studies show how to program computers to simulate human intelligence and perform data interpretation, learning, and adaptive decision-making. Within pediatric otolaryngology, there is a growing body of evidence for the ro...

AI Model Versus Clinician Otoscopy in the Operative Setting for Otitis Media Diagnosis.

Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery
Prior work has demonstrated improved accuracy in otitis media diagnosis based on otoscopy using artificial intelligence (AI)-based approaches compared to clinician evaluation. However, this difference in accuracy has not been shown in a setting resem...

Advances in Artificial Intelligence to Diagnose Otitis Media: State of the Art Review.

Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery
OBJECTIVE: Otitis media (OM) is a model disease for developing, validating, and implementing artificial intelligence (AI) techniques. We aim to review the state of the art applications of AI used to diagnose OM in pediatric and adult populations.

"Human vs Machine" Validation of a Deep Learning Algorithm for Pediatric Middle Ear Infection Diagnosis.

Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery
OBJECTIVE: We compared the diagnostic performance of human clinicians with that of a neural network algorithm developed using a library of tympanic membrane images derived from children taken to the operating room with the intent of performing myring...

A deep learning approach to the diagnosis of atelectasis and attic retraction pocket in otitis media with effusion using otoscopic images.

European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
BACKGROUND: This study aimed to develop and validate a deep learning (DL) model to identify atelectasis and attic retraction pocket in cases of otitis media with effusion (OME) using multi-center otoscopic images.

Automated multi-class classification for prediction of tympanic membrane changes with deep learning models.

PloS one
BACKGROUNDS AND OBJECTIVE: Evaluating the tympanic membrane (TM) using an otoendoscope is the first and most important step in various clinical fields. Unfortunately, most lesions of TM have more than one diagnostic name. Therefore, we built a databa...

A Deep Learning Approach for Detecting Otitis Media From Wideband Tympanometry Measurements.

IEEE journal of biomedical and health informatics
OBJECTIVE: In this study, wepropose an automatic diagnostic algorithm for detecting otitis media based on wideband tympanometry measurements.