Journal of magnetic resonance imaging : JMRI
35726646
BACKGROUND: A typical stroke MRI protocol includes perfusion-weighted imaging (PWI) and MR angiography (MRA), requiring a second dose of contrast agent. A deep learning method to acquire both PWI and MRA with single dose can resolve this issue.
Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
35982208
BACKGROUND: Low-dose (LD) myocardial perfusion (MP) SPECT suffers from high noise level, leading to compromised diagnostic accuracy. Here we investigated the denoising performance for MP-SPECT using a conditional generative adversarial network (cGAN)...
PURPOSE: To develop a physics-guided deep learning (PG-DL) reconstruction strategy based on a signal intensity informed multi-coil (SIIM) encoding operator for highly-accelerated simultaneous multislice (SMS) myocardial perfusion cardiac MRI (CMR).
European journal of nuclear medicine and molecular imaging
36102963
PURPOSE: Deep learning (DL) models have been shown to outperform total perfusion deficit (TPD) quantification in predicting obstructive coronary artery disease (CAD) from myocardial perfusion imaging (MPI). However, previously published methods have ...
Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
36099657
OBJECTIVES: Automated image-level detection of large vessel occlusions (LVO) could expedite patient triage for mechanical thrombectomy. A few studies have previously attempted LVO detection using artificial intelligence (AI) on CT angiography (CTA) i...
Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
36097242
BACKGROUND: Deep learning (DL)-based attenuation correction (AC) is promising to improve myocardial perfusion (MP) SPECT. We aimed to optimize and compare the DL-based direct and indirect AC methods, with and without SPECT and CT mismatch.
European journal of nuclear medicine and molecular imaging
36194270
PURPOSE: Artificial intelligence (AI) has high diagnostic accuracy for coronary artery disease (CAD) from myocardial perfusion imaging (MPI). However, when trained using high-risk populations (such as patients with correlating invasive testing), the ...